View: session overviewtalk overviewside by side with other conferences

11:00 | Definable decompositions for graphs of bounded linear cliquewidth SPEAKER: Mikołaj Bojańczyk ABSTRACT. We prove that for every positive integer k, there exists an MSO_1-transduction that given a graph of linear cliquewidth at most k outputs, nondeterministically, some clique decomposition of the graph of width bounded by a function of k. A direct corollary of this result is the equivalence of the notions of CMSO_1-definability and recognizability on graphs of bounded linear cliquewidth. |

11:20 | Parameterized circuit complexity of model-checking on sparse structures SPEAKER: Sebastian Siebertz ABSTRACT. We prove that for every class $C$ of graphs with effectively bounded expansion, given a first-order sentence $\varphi$ and an $n$-element structure $A$ whose Gaifman graph belongs to $C$, the question whether $\varphi$ holds in $A$ can be decided by a family of AC-circuits of size $f(\varphi)\cdot n^c$ and depth $f(\varphi)+c\log n$, where $f$ is a computable function and $c$ is a universal constant. This places the model-checking problem for classes of bounded expansion in the parameterized circuit complexity class $paraAC^1$. On the route to our result we prove that the basic decomposition toolbox for classes of bounded expansion, including orderings with bounded weak coloring numbers and low treedepth decompositions, can be computed in $paraAC^1$. |

11:40 | SPEAKER: Dror Fried ABSTRACT. The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition,in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed out before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems,which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably. |

12:00 | A parameterized halting problem, the linear time hierarchy, and the MRDP theorem SPEAKER: Yijia Chen ABSTRACT. The complexity of the parameterized halting problem for nondeterministic Turing machines p-Halt is known to be related to the question of whether there are logics capturing various complexity classes [Chen and Flum, 2012]. Among others, if p-Halt is in para-AC^0, the parameterized version of the circuit complexity class AC^0, then AC^0, or equivalently, (+,\times)-invariant FO, has a logic. Although it is widely believed that p-Halt\notin para-AC^0, we show that the problem is hard to settle by establishing a connection to the question in classical complexity of whether NE\not\subseteq LINH. Here, LINH denotes the linear time hierarchy. On the other hand, we suggest an approach toward proving NE\not\subseteq LINH using bounded arithmetic. More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem can be proved in a certain fragment of arithmetic, then NE\not\subseteq LINH. Interestingly, central to this result is a para-AC^0 lower bound for the parameterized model-checking problem for FO on arithmetical structures. |

12:20 | Regular and First Order List Functions SPEAKER: Mikolaj Bojanczyk ABSTRACT. We define two classes of functions, called regular (respectively, first-order) list functions, which manipulate objects such as lists, lists of lists, pairs of lists, lists of pairs of lists, etc. The definition is in the style of regular expressions: the functions are constructed by starting with some basic functions (e.g. projections from pairs, or head and tail operations on lists) and putting them together using four combinators (most importantly, composition of functions). Our main results are that first-order list functions are exactly the same as first-order transductions, under a suitable encoding of the inputs; and the regular list functions are exactly the same as MSO-transductions. |

11:00 | ABSTRACT. Building on recently established enumerative connections between lambda calculus and the theory of embedded graphs (or "maps"), this paper develops an analogy between typing (of lambda terms) and coloring (of maps). Our starting point is the classical notion of an abelian group-valued "flow" on an abstract graph (Tutte, 1954). Typing a linear lambda term may be naturally seen as constructing a flow (on an embedded 3-valent graph with boundary) valued in a more general algebraic structure consisting of a preordered set equipped with an "implication" operation and unit satisfying composition, identity, and unit laws. Interesting questions and results from the theory of flows (such as the existence of nowhere-zero flows) may then be re-examined from the standpoint of lambda calculus and logic. For example, we give a characterization of when the local flow relations (across vertices) may be categorically lifted to a global flow relation (across the boundary), proving that this holds just in case the underlying map has the orientation of a lambda term. We also develop a basic theory of rewriting of flows that suggests topological meanings for classical completeness results in combinatory logic, and introduce a polarized notion of flow, which draws connections to the theory of proof-nets in linear logic and to bidirectional typing. |

11:20 | Cellular Cohomology in Homotopy Type Theory SPEAKER: Kuen-Bang Hou Favonia ABSTRACT. We present a development of cellular cohomology in homotopy type theory. Cohomology associates to each space a sequence of abelian groups capturing part of its structure, and has the advantage over homotopy groups in that these abelian groups of many common spaces are easier to compute. Cellular cohomology is a special kind of cohomology designed for cell complexes: these are built in stages by attaching spheres of progressively higher dimension, and cellular cohomology defines the groups out of the combinatorial description of how spheres are attached. Our main result is that for finite cell complexes, a wide class of cohomology theories (including the ones defined through Eilenberg-MacLane spaces) can be calculated via cellular cohomology. This result was formalized in the Agda proof assistant. |

11:40 | SPEAKER: Nicolai Kraus ABSTRACT. Given a type A in homotopy type theory (HoTT), we define the free infinity-group on A as the higher inductive type FA with constructors [unit : FA], [cons : A -> FA -> FA], and conditions saying that every cons(a) is an auto-equivalence on FA. Assuming that A is a set (i.e. satisfies the principle of unique identity proofs), we are interested in the question whether FA is a set as well, which is very much related to an open problem in the HoTT book [Ex. 8.2]. In this paper, we show an approximation to the question, namely that the fundamental groups of FA are trivial. |

12:00 | SPEAKER: Floris van Doorn ABSTRACT. We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-Löf type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups and groups that can be delooped more than once. A major result is the stabilization theorem, which states that if an n-type can be delooped n+2 times, then it has the structure of an infinite loop type. Most of the results have been formalized in the Lean proof assistant. |

12:20 | Strong Sums in Focused Logic ABSTRACT. A useful connective that has not previously been made to work in focused logic is the strong sum, a form of dependent sum that is eliminated by projection rather than pattern matching. This makes strong sums powerful, but it also creates a problem adapting them to focusing: The type of the right projection from a strong sum refers to the term being projected from, but due to the structure of focused logic, that term is not available. In this work we confirm that strong sums can be viewed as a negative connective in focused logic. The key is to resolve strong sums' dependencies eagerly, before projection can see them, using a notion of selfification adapted from module type systems. We validate the logic by proving cut admissibility and identity expansion. All the proofs are formalized in Coq. |

14:00 | A modal mu perspective on solving parity games in quasipolynomial time. ABSTRACT. We present a new quasi-polynomial algorithm for solving parity games. It is based on a new bisimulation invariant measure of complexity for parity games, called the register-index, which captures the complexity of the priority assignment. For fixed parameter k, the class of games with register-index bounded by k is solvable in polynomial time. We show that the register-index of parity games of size n is bounded by O(log n) and derive a quasi-polynomial algorithm. Finally we give the first descriptive complexity account of the quasi-polynomial solvability of parity games: The winning regions of parity games with p priorities and register-index k are described by a modal μ formula of which the complexity, as measured by its alternation depth, depends on k rather than p. |

14:20 | A pseudo-quasi-polynomial algorithm for solving mean-payoff parity games SPEAKER: Laure Daviaud ABSTRACT. In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games. |

14:40 | SPEAKER: Emmanuel Filiot ABSTRACT. In this paper, we study the rational synthesis problem for multi-player non zero-sum games played on finite graphs for omega-regular objectives. Rationality is formalized by the concept of Nash equilibrium (NE). Contrary to previous works, we consider in this work the more general and more practically relevant case where players are imperfectly informed. In sharp contrast with the perfect information case, NE are not guaranteed to exist in this more general setting. This motivates the study of the NE existence problem. We show that this problem is ExpTime-C for parity objectives in the two-player case (even if both players are imperfectly informed) and undecidable for more than 2 players. We then study the rational synthesis problem and show that the problem is also ExpTime-C for two imperfectly informed players and undecidable for more than 3 players. As the rational synthesis problem considers a system (Player 0) playing against a rational environment (composed of k players), we also consider the natural case where only Player 0 is imperfectly informed about the state of the environment (and the environment is considered as perfectly informed). In this case, we show that the ExpTime-C result holds when k is arbitrary but fixed. We also analyse the complexity when k is part of the input. |

15:00 | SPEAKER: M. Praveen ABSTRACT. We introduce two-player games which build words over infinite alphabets, and we study the problem of checking the existence of winning strategies. These games are played by two players, who take turns in choosing valuations for variables ranging over an infinite data domain, thus generating multi-attributed data words. The winner of the game is specified by formulas in the Logic of Repeating Values, which can reason about repetitions of data values in infinite data words. We prove that it is undecidable to check if one of the players has a winning strategy, even in very restrictive settings. However, we prove that if one of the players is restricted to choose valuations ranging over the Boolean domain, the games are effectively equivalent to single-sided games on vector addition systems with states (in which one of the players can change control states but cannot change counter values), known to be decidable and effectively equivalent to energy games. Previous works have shown that the satisfiability problem for various variants of the logic of repeating values is equivalent to the reachability and coverability problems in vector addition systems. Our results raise this connection to the level of games, augmenting further the associations between logics on data words and counter systems. |

15:20 | Compositional game theory SPEAKER: Jules Hedges ABSTRACT. We introduce open games as a compositional foundation of economic game theory. A compositional approach potentially allows methods of game theory and theoretical computer science to be applied to large-scale economic models for which standard economic tools are not practical. An open game represents a game played relative to an arbitrary environment and to this end we introduce the concept of coutility, which is the utility generated by an open game and returned to its environment. Open games are the morphisms of a symmetric monoidal category and can therefore be composed by categorical composition into sequential move games and by monoidal products into simultaneous move games. Open games can be represented by string diagrams which provide an intuitive but formal visualisation of the information flows. We show that a variety of games can be faithfully represented as open games in the sense of having the same Nash equilibria and off-equilibrium best responses. |

14:00 | SPEAKER: Roberto Bruni ABSTRACT. Assigning a satisfactory truly concurrent semantics to Petri nets with confusion and distributed decisions is a long standing problem, especially if one wants to resolve decisions by drawing from some probability distribution. Here we propose a general solution based on a recursive, static decomposition of (occurrence) nets in loci of decision, called structural branching cells (s-cells). Each s-cell exposes a set of alternatives, called transactions. Our solution transforms a given Petri net into another net whose transitions are the transactions of the s-cells and whose places are those of the original net, with some auxiliary structure for bookkeeping. The resulting net is confusion-free, and thus conflicting alternatives can be equipped with probabilistic choices, while nonintersecting alternatives are purely concurrent and their probability distributions are independent. The validity of the construction is witnessed by a tight correspondence with the recursively stopped configurations of Abbes and Benveniste. Some advantages of our approach are that: i) s-cells are defined statically and locally in a compositional way; ii) our resulting nets exhibit the complete concurrency property. |

14:20 | SPEAKER: Dan Frumin ABSTRACT. We present ReLoC: a logic for proving refinements of programs in a language with higher-order state, fine-grained concurrency, polymorphism and recursive types. The core of our logic is a judgement e ≾ e' : τ, which expresses that a program e refines a program e' at type τ. In contrast to earlier work on refinements for languages with higher-order state and concurrency, ReLoC provides type- and structure-directed rules for manipulating this judgement, whereas previously, such proofs were carried out by unfolding the judgement into its definition in the model. These more abstract proof rules make it simpler to carry out refinement proofs. Moreover, we introduce logically atomic relational specifications: a novel approach for relational specifications for compound expressions that take effect at a single instant in time. We demonstrate how to formalise and prove such relational specifications in ReLoC, allowing for more modular proofs. ReLoC is built on top of the expressive concurrent separation logic Iris, allowing us to leverage features of Iris such as invariants and ghost state. We provide a mechanisation of our logic in Coq, which does not just contain a proof of soundness, but also tactics for interactively carrying out refinements proofs. We have used these tactics to mechanise several examples, which demonstrates the practicality and modularity of our logic. |

14:40 | SPEAKER: Adrien Durier ABSTRACT. We study Milner's encoding of the call-by-value lambda-calculus in the pi-calculus. We show that, by tuning the encoding to two subcalculi of the pi-calculus (Internal pi and Asynchronous Local pi), the equivalence on lambda-terms induced by the encoding coincides with Lassen's eager normal form bisimilarity, extended to handle eta-equality. As behavioural equivalence in the pi-calculus we consider contextual equivalence and barbed congruence. We also extend the results to preorders. A crucial technical ingredient in the proofs is the recently-introduced technique of unique solutions of equations, further developed in this paper. In this respect, the paper also intends to be an extended case study on the applicability and expressiveness of the technique. |

15:00 | Quasi-Open Bisimilarity with Mismatch is Intuitionistic SPEAKER: Ki Yung Ahn ABSTRACT. Quasi-open bisimilarity is the coarsest notion of bisimilarity for the pi-calculus that is also a congruence. This work extends quasi-open bisimilarity to handle mismatch (guards with inequalities). This minimal extension of quasi-open bisimilarity allows fresh names to be manufactured to provide constructive evidence that an inequality holds. The extension of quasi-open bisimilarity is canonical and robust --- coinciding with open barbed bisimilarity (an objective notion of bisimilarity congruence) and characterised by an intuitionistic variant of an established modal logic. The more famous open bisimilarity is also considered, for which the coarsest extension for handling mismatch is identified. Applications to symbolic equivalence checking and symbolic model checking are highlighted, e.g., for verifying privacy properties. Theorems and examples are mechanised using the proof assistant Abella. |

15:20 | SPEAKER: Romain Demangeon ABSTRACT. This paper studies the complexity of pi-calculus processes with respect to the quantity of transitions caused by an incoming message. First we propose a typing system for integrating Bellantoni and Cook's characterisation of polynomially-bound recursive functions into Deng and Sangiorgi's typing system for termination. We then define computational complexity of distributed messages based on Degano and Priami's causal semantics, which identifies the dependency between interleaved transitions. Next we apply a syntactic flow analysis to typable processes to ensure the computational bound of distributed messages. We prove that our analysis is decidable for a given process; sound in the sense that it guarantees that the total number of messages causally dependent of an input request received from the outside is bounded by a polynomial of the content of this request; and complete which means that each polynomial recursive function can be computed by a typable process. |

16:00 | SPEAKER: Salomon Sickert ABSTRACT. We present a unified translation of LTL formulas into deterministic Rabin automata, limit-deterministic Büchi automata, and nondeterministic Büchi automata. The translations yield automata of asymptotically optimal size (double or single exponential, respectively). All three translations are derived from one single Master Theorem of purely logical nature. The Master Theorem decomposes the language of a formula into a positive boolean combination of languages that can be translated into ω-automata by elementary means. In particular, the breakpoint, Safra, and ranking constructions used in other translations are not needed. |

16:20 | SPEAKER: Joel Allred ABSTRACT. Complementation of Büchi automata is well known for being complex, as Büchi automata in general are nondeterministic. In the worst case, a state-space growth of $O((0.76n)^n)$ cannot be avoided. Experimental results suggest that complementation algorithms perform better on average when they are structurally simple. In this paper, we present a simple algorithm for complementing Büchi automata, operating directly on subsets of states, structured into state-set tuples (similar to slices), and producing a deterministic automaton. The second step in the construction is then a complementation procedure that resembles the straightforward complementation algorithm for deterministic Büchi automata, the latter algorithm actually being a special case of our construction. Finally, we prove our construction to be optimal, i.e.\ having an upper bound in $O((0.76n)^n)$, and furthermore calculate the $0.76$ factor in a novel exact way. |

16:40 | The State Complexity of Alternating Automata ABSTRACT. This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. We look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model. |

17:00 | Automaton-Based Criteria for Membership in CTL SPEAKER: Yariv Shaulian ABSTRACT. Computation Tree Logic (CTL) is widely used in formal verification, however, unlike linear temporal logic (LTL), its connection to automata over words and trees is not yet fully understood. Moreover, the long sought connection between LTL and CTL is still missing; It is not known whether their common fragment is decidable, and there are very limited necessary conditions and sufficient conditions for checking whether an LTL formula is definable in CTL. We provide sufficient conditions and necessary conditions for LTL formulas and omega-regular languages to be expressible in CTL. The conditions are automaton-based; We first tighten the automaton characterization of CTL to the class of Hesitant Alternating Linear Tree Automata (HLT), and then conduct the conditions by relating between the cycles of a word automaton for a given omega-regular language and the cycles of a potentially equivalent HLT. The new conditions allow to simplify proofs of known results on languages that are definable, or not, in CTL, as well as to prove new results. Among which, they allow us to refute a conjecture by Clarke and Draghicescu from 1988, regarding a condition for a CTL* formula to be expressible in CTL. |

17:20 | Separability by piecewise testable languages and downward closures beyond subwords ABSTRACT. We introduce a flexible class of well-quasi-orderings (WQOs) on words that generalizes the ordering of (not necessarily contiguous) subwords. Each such WQO induces a class of piecewise testable languages (PTLs) as Boolean combinations of upward closed sets. In this way, a range of regular language classes arises as PTLs. Moreover, each of the WQOs guarantees regularity of all downward closed sets. We consider two problems. First, we study which (perhaps non-regular) language classes permit a decision procedure to decide whether two given languages are separable by a PTL with respect to a given WQO. Second, we want to effectively compute downward closures with respect to these WQOs. Our first main result that for each of the WQOs, under mild assumptions, both problems reduce to the simultaneous unboundedness problem (SUP) and are thus solvable for many powerful system classes. In the second main result, we apply the framework to show decidability of separability of regular languages by $\mathcal{B}\Sigma_1[<, \mathsf{mod}]$, a fragment of first-order logic with modular predicates. |

17:40 | Regular Transducer Expressions for Regular Transformations over infinite words SPEAKER: Vrunda Dave ABSTRACT. Functional MSO transductions, deterministic two-way transducers, as well as streaming string transducers are all equivalent models for regular functions. In this paper, we show that every regular function, either on finite words or on infinite words, captured by a deterministic two-way transducer, can be described with a regular transducer expression (RTE). For infinite words, the transducer uses Muller acceptance and omega-regular look-ahead. RTEs are constructed from constant functions using the combinators if-then-else (deterministic choice), Hadamard product, and unambiguous versions of the Cauchy product, the 2-chained Kleene-iteration and the 2-chained omega-iteration. Our proof works for transformations of both finite and infinite words, extending the result on finite words of Alur et al. in LICS'14. In order to construct an RTE associated with a deterministic two-way Muller transducer with look-ahead, we introduce the notion of transition monoid for such two-way transducers where the look-ahead is captured by some backward deterministic Buchi automaton. Then, we use an unambiguous version of Imre Simon's famous forest factorization theorem in order to derive a ``good'' (omega-)regular expression for the domain of the two-way transducer. ``Good'' expressions are unambiguous and Kleene-plus as well as omega-iterations are only used on subexpressions corresponding to idempotent elements of the transition monoid. The combinator expressions are finally constructed by structural induction on the ``good'' (omega-)regular expression describing the domain of the transducer. |

16:00 | Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams SPEAKER: Vladimir Zamdzhiev ABSTRACT. Linear/non-linear (LNL) models, as described by Benton, soundly model a LNL term calculus and LNL logic closely related to intuitionistic linear logic. Every such model induces a canonical enrichment that we show soundly models a LNL lambda calculus for string diagrams, introduced by Rios and Selinger (with primary application in quantum computing). Our abstract treatment of this language leads to simpler concrete models compared to those presented so far. We also extend the language with general recursion and prove soundness. Finally, we present an adequacy result for the diagram-free fragment of the language which corresponds to a modified version of Benton and Wadler's adjoint calculus with recursion. |

16:20 | SPEAKER: Giorgio Bacci ABSTRACT. Markov processes are a fundamental models of probabilistic transition systems and are the underlying semantics of probabilistic programs. We give an algebraic axiomatization of Markov processes using the framework of quantitative equational reasoning introduced in LICS2016. We present the theory in a structured way using work of Hyland et al. on combining monads. We take the interpolative barycentric algebras of LICS16 which captures the Kantorovich metric and combine it with a theory of contractive operators to give the required axiomatization of Markov processes both for discrete and continuous state spaces. This work, apart from its intrinsic interest, shows how one can extend the general notion of combining effects to the quantitative setting. |

16:40 | Boolean-Valued Semantics for Stochastic Lambda-Calculus SPEAKER: Radu Mardare ABSTRACT. The ordinary untyped lambda-calculus has a set-theoretic model proposed in two related forms by Scott and Plotkin in the 1970s. Recently Scott saw how to extend such $\lambda$-calculus models using random variables in a standard way. However, to do reasoning and to add further features, it is better to interpret the construction in a higher-order Boolean- valued model theory using the standard measure algebra. In this paper we develop the semantics of an extended stochastic lambda-calculus suitable for a simple probabilistic programming language, and we exhibit a number of key equations satisfied by the terms of our example language. The terms are interpreted using a continuation-style semantics along with an additional argument, an infinite sequence of coin tosses which serve as a source of randomness. The construction of the model requires a subtle measure-theoretic analysis of the space of coin-tossing sequences. We also introduce a fixed-point operator as a new syntactic construct, as beta-reduction turns out not sound for all terms in our semantics. Finally, we develop a new notion of equality between terms valued by elements of the measure algebra, allowing one to reason about terms that may not be equal almost everywhere. This we hope provides a new framework for developing reasoning about probabilistic programs and their properties of higher type. |

17:00 | SPEAKER: Filippo Bonchi ABSTRACT. Abstract interpretation is a method to automatically find invariants of programs or pieces of code whose semantics is given via least fixed-points. Up-to techniques have been introduced as enhancements of coinduction, an abstract principle to prove properties expressed as greatest fixed-points. While abstract interpretation is always sound by definition, the soundness of up-to techniques needs some ingenuity to be proven. For completeness, the setting is switched: up-to techniques are always complete, while abstract domains are not. In this work we show that, under reasonable assumptions, there is an evident connection between sound up-to techniques and complete abstract domains. |

17:20 | Every λ-Term is Meaningful for the Infinitary Relational Model ABSTRACT. Infinite types and formulas are known to have really curious and unsound behaviors. For instance, they allow to type Ω, the auto-autoapplication and they thus do not ensure any form of normalization/productivity. Moreover, in most infinitary frameworks, it is not difficult to define a type R that can be assigned to every λ- term. However, these observations do not say much about what coinductive (i.e. infinitary) type grammars are able to provide: it is for instance very difficult to know what types (besides R) can be assigned to a given term in this setting. We begin with a discussion on the expressivity of different forms of infinite types. Then, using the resource-awareness of sequential intersection types (system S) and tracking, we prove that infinite types are able to characterize the order (arity) of every λ-terms and that, in the infinitary extension of the relational model, every term has a “meaning” i.e. a non-empty denotation. From the technical point of view, we must deal with the total lack of productivity guarantee for typable terms: we do so by importing methods inspired by first order model theory. |

17:40 | Probabilistic Böhm Trees and Probabilistic Separation ABSTRACT. We study the notion of observational equivalence in the call-by-name probabilistic lambda-calculus, where two terms are said observationally equivalent if under any context, their head reductions converge with the same probability. Our goal is to generalise the separation theorem to this probabilistic setting. To do so we define probabilistic Böhm trees and probabilistic Nakajima trees, and we mix the well-known B\"öhm-out technique with some new techniques to manipulate and separate probability distributions. |

FLoC reception at Ashmolean Museum. Drinks and canapés available from 7pm (pre-booking via FLoC registration system required; guests welcome).