Tags:Confusion, Dynamic nets, OR causality, Persistent places and Petri nets
Abstract:
Assigning a satisfactory truly concurrent semantics to Petri nets with confusion and distributed decisions is a long standing problem, especially if one wants to resolve decisions by drawing from some probability distribution. Here we propose a general solution based on a recursive, static decomposition of (occurrence) nets in loci of decision, called structural branching cells (s-cells). Each s-cell exposes a set of alternatives, called transactions. Our solution transforms a given Petri net into another net whose transitions are the transactions of the s-cells and whose places are those of the original net, with some auxiliary structure for bookkeeping. The resulting net is confusion-free, and thus conflicting alternatives can be equipped with probabilistic choices, while nonintersecting alternatives are purely concurrent and their probability distributions are independent. The validity of the construction is witnessed by a tight correspondence with the recursively stopped configurations of Abbes and Benveniste. Some advantages of our approach are that: i) s-cells are defined statically and locally in a compositional way; ii) our resulting nets exhibit the complete concurrency property.
Concurrency and Probability: Removing Confusion, Compositionally