|
Download PDFOpen PDF in browserCurrent versionDiscovery of the Characteristics of the Cubic Othello Chessboard and Its Implementation of Visualization Expert SystemEasyChair Preprint 12767, version 19 pages•Date: March 27, 2024AbstractThe standard planar Othello game has 8 (rows) * 8 (columns) = 64 (squares). Although this planar Othello game has been solved, this paper still proposes a new problem based on this foundation: Has the originally evenly matched situation between the first move and second move sides changed in the game of Othello played on a cubic board? Certainly, it is not very suitable for people to play against each other, because playing cubic Othello in a real-world environment is very difficult. Even if it is changed to the smallest cubic Othello board with 4 (squares) * 6 (faces) = 24 (squares). Playing cubic Othello is very challenging because it requires understanding the characteristics of cubic Othello and making clear definitions of the ways of moving. Only in this way can we attempt to apply machine learning techniques to cubic Othello and develop an expert system that can play chess on a cubic Othello board. Then we found that the first player (black) of cubic Othello has a winning rate of about 20% with blind moves, while the second player (white) has a probability of about 80% with blind moves. It is evident that in cubic Othello, the second player has an advantage, which is far from the conclusion pointed out in the paper related to planar Othello, that a perfect game of two players in planar Othello will eventually lead to a draw. Furthermore, the expert system proposed in this paper that is trained using the GPU memory on a personal computer can be executed on any contemporary browser. The training that originally took tens of days to complete using CPU memory on a personal computer can now be completed in tens of minutes in the GPU memory of a personal computer. This clearly shows that the significant benefits that can be achieved by effectively utilizing the GPU memory on a personal computer have surpassed the use of a large CPU memory computer. Keyphrases: Artificial Intelligence, Cubic Chessboard, GPU memory, Othello Game, k-Nearest Neighbors Algorithm, machine learning Download PDFOpen PDF in browserCurrent version |
|
|