View: session overviewtalk overview
Enter here.
09:00 | Some Aspects of Lattice Tolerances ABSTRACT. The idea of tolerance relations seen as a formalization of the intuitive notion of resemblance was formalized by E. C. Zeeman in 1960s. In mathematics, as a natural generalization of congruences, tolerances appeared to be a very useful tool, especially in universal algebra. Tolerances of a lattice L are reflexive, symmetric relations compatible with lattice operations of L. They form a lattice denoted by Tol(L). A block of a tolerance T ∊ Tol(L) is a maximal set X ⊆ L satisfying X2 ⊆ T. Blocks are convex sublattices of L, and it was shown by G. Czédli that they form a lattice (denoted by L/T), called the factor lattice of L modulo T. Although this construction generalizes the notion of a factor lattice L/φ defined by means of a congruence φ ∊ Con(L), properties of factor lattices modulo tolerances are significantly different. For instance, L/φ belongs to the same equational class as L, however, the lattice L/T does not belong to it, in general. It is known that for any φ ∊ Con(L), the congruence lattice of the factor lattice L/φ is isomorphic to the principal filter [φ) of φ in Con(L) (homomorphism theorem). Moreover, any ψ ∊ Con(L), ψ ≥ φ induces the congruence ψ/φ on the factor lattice L/φ such that (L/φ)/(ψ/φ) ≅ L/ψ holds (second isomorphism theorem). In this talk we formulate analogous results for tolerance factors defining a new partial order ⊑ on the lattice Tol(L) such that for any S ∊ Tol(L) with T ⊑ S, the tolerance S/T is induced on the factor lattice L/T. We also discuss the philosophical background of tolerances and their significance in lattice theory. References: [1] Ivan Chajda (1991): Algebraic Theory of Tolerance Relations. Univerzita Palackého Olomouc, Olomouc. [2] George Grätzer (2011): Lattice Theory: Foundation. Springer, Basel, doi:10.1007/978-3-0348-0018-1. [3] Joanna Grygiel (2019): Many faces of lattice tolerances. Bulletin of the Section of Logic 48(4), pp. 285–298, doi:10.18778/0138-0680.48.4.03. [4] Joanna Grygiel & Sándor Radeleczki (2013): On the tolerance lattice of tolerance factors. Acta Mathematica Hungarica 141(3), pp. 220–237, doi:10.1007/s10474-013-0340-x. [5] Eric Christopher Zeeman (1962): The topology of the brain and visual perception. In Marion Kirkland Fort, editor: Topology of 3-Manifolds and Related Topics, Dover Publications, New Jersey. |
Enter here.
Enter here.
Enter here.
14:30 | Applications of Relating Semantics in the Normative Domain PRESENTER: Matteo Pasucci |
15:00 | An Analysis of Poly-connexivity in Boolean Connexive Logic PRESENTER: Mateusz Klonowski |
15:30 | From the Logic of Grounding to Relating Logic |
16:00 | Scientific Understanding Meets Relating Logic |
16:30 | Tableaux for Some Deontic Logics with the Explicit Permission Operator PRESENTER: Tomasz Jarmużek |
17:00 | On Embedding of D2 into the Minimal Discussive Logic PRESENTER: Marek Nasieniewski |
Enter here.
14:30 | Philosophical foundations of non-Fregean logics, basic properties of SCI PRESENTER: Dorota Leszczyńska-Jasion ABSTRACT. The idea of Non-Fregean Logics emerged in the sixties together with Roman Suszko's willingness to formalize Wittgenstein's Tractatus [5,4]. Non-Fregean Logics (NFL, for short) owe their name to the rejection of the so called Fregean Axiom which says that the identity of referents of two given sentences boils down to the identity of their logical values [3]. In NFLs semantic correlates of sentences are not their logical values, but situations. The language of an NFL is equipped with the connective of identity, ≡, which is intended to reflect the fact that two sentences describe the same situation. The weakest considered by Suszko NFL is the Sentential Calculus with Identity, SCI for short, build upon Classical Sentential Calculus by the addition of the following axioms characterizing ≡: (≡1) φ ≡ φ (≡2) (φ ≡ ψ) → (¬ φ ≡ ¬ ψ) (≡3) (φ ≡ ψ) → (φ ↔ ψ) (≡4) ((φ ≡ ψ) ∧ (α ≡ β)) → ((φ ⊗ α) ≡ (ψ ⊗ β)) Suszko's identity refers to a congruence relation, and it is clearly stronger than equivalence. The only valid formulas having ≡ as the main connective are of the form `φ ≡ φ', in this sense Non-Fregean identity formalized within SCI is a very strong connective. This interpretation is usually relaxed by extending the axiomatic basis of SCI. The tutorial Proof-Theoretical Analysis of Non-Fregean Logics, proposed for the conference Non-Classical Logics. Theory and Applications 2022, focuses on proof-theory for NFLs. We pay special attention to structural proof theory taking into consideration sequent systems and natural deduction systems. The issues of cut-elimination and normalization are discussed. We also outline ideas for possible extensions of SCI and its intuitionistic counterpart called ISCI. We begin with a synthetic tableau system (ST-system, for short) for SCI. In this method there is exactly one binary branching rule and a collection of linear rules called synthetic or synthesizing, since they build complex formulas from their subformulas and/or from their negations. The identity connective is characterized by a collection of such synthesizing rules encoding the basic properties of congruence. We then move to the structural proof theory for SCI; we present sequent calculus which encapsulates the main properties of identity expressed within axioms (≡1)–(≡4), [1]. This particular calculus is then modified to fit the intuitionistic setting of ISCI, [2], for which we also discuss the decidability issue. We also cover WB – a Boolean extension of SCI obtained through the addition of six axioms extending the properties of the identity connective. Now, in contrast to SCI, we can consider a larger set of valid formulas built with the identity connective. We discuss a sequent calculus formalization of WB and its algebraic semantics. We also shortly discuss other extensions considered by Suszko: WT and WH. In the remaining parts of the tutorial we focus on natural deduction systems for ISCI. Intuitionistic setting requires a constructive interpretation of identity, different ideas of which are discussed. This discussion, in turn, leads us to the identity's relation to isomorphism, to which we come back in the last part of the workshop. We also address cut elimination in sequent calculus and normalization in natural deduction systems. Most studied extensions of SCI are WB, WT and WH. We believe it is beneficial to consider analogous extensions of ISCI as well. Two usual ways of introducing extensions of an NFL are through the addition of axioms extending the properties of identity connective or by the addition of inference rules. Here we discuss less straightforward strategy. In WB a formula of the form p ≡ ¬¬ p is valid. Naturally, the addition of this formula to ISCI makes it an extension of SCI at once: the law of excluded middle becomes derivable and the starting-point logic is no longer intuitionistic. Thus we need to consider only those extensions that do not affect the constructive character of the logic. We consider two such extensions; one of them is related to the notion of propositional isomorphism, the other introduces a special case of the law of excluded middle. References: [1] Szymon Chlebowski (2018): Sequent Calculi for SCI. Studia Logica 106(3), pp. 541–563, doi:10.1007/s11225-017-9754-8. [2] Szymon Chlebowski & Dorota Leszczyńska-Jasion (2019): An investigation into intuitionistic logic with identity. Bulletin of the Section of Logic 48(4), pp. 259–283, doi:10.18778/0138-0680.48.4.02. [3] Gottlob Frege (1948): Sense and reference. The Philosophical Review 57(3), pp. 209–230. Available at 10.2307/2181485. [4] Mieczysław Omyła (1986): Zarys Logiki Niefregowskiej (Introduction to Non-Fregean Logic). Państwowe Wydawnictwo Naukowe, Warszawa. [5] Roman Suszko (1975): Abolition of the Fregean axiom. In Rohit Parikh, editor: Logic Colloquium, Lecture Notes in Mathematics 453, Springer, Berlin, Heidelberg, pp. 169–239, doi:10.1007/BFb0064874. |
15:30 | Structural proof theory of SCI and WB PRESENTER: Marta Gawek ABSTRACT. The idea of Non-Fregean Logics emerged in the sixties together with Roman Suszko's willingness to formalize Wittgenstein's Tractatus [5,4]. Non-Fregean Logics (NFL, for short) owe their name to the rejection of the so called Fregean Axiom which says that the identity of referents of two given sentences boils down to the identity of their logical values [3]. In NFLs semantic correlates of sentences are not their logical values, but situations. The language of an NFL is equipped with the connective of identity, ≡, which is intended to reflect the fact that two sentences describe the same situation. The weakest considered by Suszko NFL is the Sentential Calculus with Identity, SCI for short, build upon Classical Sentential Calculus by the addition of the following axioms characterizing ≡: (≡1) φ ≡ φ (≡2) (φ ≡ ψ) → (¬ φ ≡ ¬ ψ) (≡3) (φ ≡ ψ) → (φ ↔ ψ) (≡4) ((φ ≡ ψ) ∧ (α ≡ β)) → ((φ ⊗ α) ≡ (ψ ⊗ β)) Suszko's identity refers to a congruence relation, and it is clearly stronger than equivalence. The only valid formulas having ≡ as the main connective are of the form `φ ≡ φ', in this sense Non-Fregean identity formalized within SCI is a very strong connective. This interpretation is usually relaxed by extending the axiomatic basis of SCI. The tutorial Proof-Theoretical Analysis of Non-Fregean Logics, proposed for the conference Non-Classical Logics. Theory and Applications 2022, focuses on proof-theory for NFLs. We pay special attention to structural proof theory taking into consideration sequent systems and natural deduction systems. The issues of cut-elimination and normalization are discussed. We also outline ideas for possible extensions of SCI and its intuitionistic counterpart called ISCI. We begin with a synthetic tableau system (ST-system, for short) for SCI. In this method there is exactly one binary branching rule and a collection of linear rules called synthetic or synthesizing, since they build complex formulas from their subformulas and/or from their negations. The identity connective is characterized by a collection of such synthesizing rules encoding the basic properties of congruence. We then move to the structural proof theory for SCI; we present sequent calculus which encapsulates the main properties of identity expressed within axioms (≡1)–(≡4), [1]. This particular calculus is then modified to fit the intuitionistic setting of ISCI, [2], for which we also discuss the decidability issue. We also cover WB – a Boolean extension of SCI obtained through the addition of six axioms extending the properties of the identity connective. Now, in contrast to SCI, we can consider a larger set of valid formulas built with the identity connective. We discuss a sequent calculus formalization of WB and its algebraic semantics. We also shortly discuss other extensions considered by Suszko: WT and WH. In the remaining parts of the tutorial we focus on natural deduction systems for ISCI. Intuitionistic setting requires a constructive interpretation of identity, different ideas of which are discussed. This discussion, in turn, leads us to the identity's relation to isomorphism, to which we come back in the last part of the workshop. We also address cut elimination in sequent calculus and normalization in natural deduction systems. Most studied extensions of SCI are WB, WT and WH. We believe it is beneficial to consider analogous extensions of ISCI as well. Two usual ways of introducing extensions of an NFL are through the addition of axioms extending the properties of identity connective or by the addition of inference rules. Here we discuss less straightforward strategy. In WB a formula of the form p ≡ ¬¬ p is valid. Naturally, the addition of this formula to ISCI makes it an extension of SCI at once: the law of excluded middle becomes derivable and the starting-point logic is no longer intuitionistic. Thus we need to consider only those extensions that do not affect the constructive character of the logic. We consider two such extensions; one of them is related to the notion of propositional isomorphism, the other introduces a special case of the law of excluded middle. References: [1] Szymon Chlebowski (2018): Sequent Calculi for SCI. Studia Logica 106(3), pp. 541–563, doi:10.1007/s11225-017-9754-8. [2] Szymon Chlebowski & Dorota Leszczyńska-Jasion (2019): An investigation into intuitionistic logic with identity. Bulletin of the Section of Logic 48(4), pp. 259–283, doi:10.18778/0138-0680.48.4.02. [3] Gottlob Frege (1948): Sense and reference. The Philosophical Review 57(3), pp. 209–230. Available at 10.2307/2181485. [4] Mieczysław Omyła (1986): Zarys Logiki Niefregowskiej (Introduction to Non-Fregean Logic). Państwowe Wydawnictwo Naukowe, Warszawa. [5] Roman Suszko (1975): Abolition of the Fregean axiom. In Rohit Parikh, editor: Logic Colloquium, Lecture Notes in Mathematics 453, Springer, Berlin, Heidelberg, pp. 169–239, doi:10.1007/BFb0064874. |
16:30 | Intuitionistic non-Fregean logic ISCI PRESENTER: Szymon Chlebowski ABSTRACT. The idea of Non-Fregean Logics emerged in the sixties together with Roman Suszko's willingness to formalize Wittgenstein's Tractatus [5,4]. Non-Fregean Logics (NFL, for short) owe their name to the rejection of the so called Fregean Axiom which says that the identity of referents of two given sentences boils down to the identity of their logical values [3]. In NFLs semantic correlates of sentences are not their logical values, but situations. The language of an NFL is equipped with the connective of identity, ≡, which is intended to reflect the fact that two sentences describe the same situation. The weakest considered by Suszko NFL is the Sentential Calculus with Identity, SCI for short, build upon Classical Sentential Calculus by the addition of the following axioms characterizing ≡: (≡1) φ ≡ φ (≡2) (φ ≡ ψ) → (¬ φ ≡ ¬ ψ) (≡3) (φ ≡ ψ) → (φ ↔ ψ) (≡4) ((φ ≡ ψ) ∧ (α ≡ β)) → ((φ ⊗ α) ≡ (ψ ⊗ β)) Suszko's identity refers to a congruence relation, and it is clearly stronger than equivalence. The only valid formulas having ≡ as the main connective are of the form `φ ≡ φ', in this sense Non-Fregean identity formalized within SCI is a very strong connective. This interpretation is usually relaxed by extending the axiomatic basis of SCI. The tutorial Proof-Theoretical Analysis of Non-Fregean Logics, proposed for the conference Non-Classical Logics. Theory and Applications 2022, focuses on proof-theory for NFLs. We pay special attention to structural proof theory taking into consideration sequent systems and natural deduction systems. The issues of cut-elimination and normalization are discussed. We also outline ideas for possible extensions of SCI and its intuitionistic counterpart called ISCI. We begin with a synthetic tableau system (ST-system, for short) for SCI. In this method there is exactly one binary branching rule and a collection of linear rules called synthetic or synthesizing, since they build complex formulas from their subformulas and/or from their negations. The identity connective is characterized by a collection of such synthesizing rules encoding the basic properties of congruence. We then move to the structural proof theory for SCI; we present sequent calculus which encapsulates the main properties of identity expressed within axioms (≡1)–(≡4), [1]. This particular calculus is then modified to fit the intuitionistic setting of ISCI, [2], for which we also discuss the decidability issue. We also cover WB – a Boolean extension of SCI obtained through the addition of six axioms extending the properties of the identity connective. Now, in contrast to SCI, we can consider a larger set of valid formulas built with the identity connective. We discuss a sequent calculus formalization of WB and its algebraic semantics. We also shortly discuss other extensions considered by Suszko: WT and WH. In the remaining parts of the tutorial we focus on natural deduction systems for ISCI. Intuitionistic setting requires a constructive interpretation of identity, different ideas of which are discussed. This discussion, in turn, leads us to the identity's relation to isomorphism, to which we come back in the last part of the workshop. We also address cut elimination in sequent calculus and normalization in natural deduction systems. Most studied extensions of SCI are WB, WT and WH. We believe it is beneficial to consider analogous extensions of ISCI as well. Two usual ways of introducing extensions of an NFL are through the addition of axioms extending the properties of identity connective or by the addition of inference rules. Here we discuss less straightforward strategy. In WB a formula of the form p ≡ ¬¬ p is valid. Naturally, the addition of this formula to ISCI makes it an extension of SCI at once: the law of excluded middle becomes derivable and the starting-point logic is no longer intuitionistic. Thus we need to consider only those extensions that do not affect the constructive character of the logic. We consider two such extensions; one of them is related to the notion of propositional isomorphism, the other introduces a special case of the law of excluded middle. References: [1] Szymon Chlebowski (2018): Sequent Calculi for SCI. Studia Logica 106(3), pp. 541–563, doi:10.1007/s11225-017-9754-8. [2] Szymon Chlebowski & Dorota Leszczyńska-Jasion (2019): An investigation into intuitionistic logic with identity. Bulletin of the Section of Logic 48(4), pp. 259–283, doi:10.18778/0138-0680.48.4.02. [3] Gottlob Frege (1948): Sense and reference. The Philosophical Review 57(3), pp. 209–230. Available at 10.2307/2181485. [4] Mieczysław Omyła (1986): Zarys Logiki Niefregowskiej (Introduction to Non-Fregean Logic). Państwowe Wydawnictwo Naukowe, Warszawa. [5] Roman Suszko (1975): Abolition of the Fregean axiom. In Rohit Parikh, editor: Logic Colloquium, Lecture Notes in Mathematics 453, Springer, Berlin, Heidelberg, pp. 169–239, doi:10.1007/BFb0064874. |