View: session overviewtalk overview
Enter here.
Enter here.
Enter here.
12:00 | Many-Sorted Logic ABSTRACT. Many-sorted logic is not only a natural logic for reasoning about more than one sort of objects, but also a unifying logic, the best target logic in translation issues, due to its efficient proof theory, flexibility, naturalness and versatility to adapt to reasoning about a variety of objects. Translations can be seen as the path to completeness in three possible stages: abstract completeness at the first stage, weak and strong completeness at the other two. The case of second-order logic can act as the source of inspiration for translations of other logical systems. The idea is to include in the many-sorted structure obtained by direct conversion of the logic being translated a domain for sets (and relations); namely, for all sets and relations defined in the original logic with their own formulas. And so, we are somehow shifting to second-order logic. In these structures, the Comprehension Schema restricted to formulas which are translations is always true. The idea of restricting CS to obtain new logics is taken from Henkin [1]. References: [1] Leon Henkin (1953): Banishing the rule of substitution for functional variables. Journal of Symbolic Logic 18(3), pp. 201–208, doi:10.2307/2267403. |
Enter here.
14:30 | Connexive Logics via Relating Semantics ABSTRACT. There is a common agreement that each connexive logic should satisfy the Aristotles and Boethian Theses (AB). However, the sole AB theses don't guarantee any common content or other form of "connexions" as they are true in binary matrix {0,1} with distinguished value of 1, with classical material implication and negation defined as ~1 = ~0 = 1. Similarly, AB are true in a binary matrix with classical negation and implication defined as x ⇒ y = 1 iff x = y. Counterexamples above show that the sole AB theses are very weak and should be strengthen in some way. We can eliminate the first counterexample by assuming that negation behaves in a classical way. We did it in [6] and [7]. It brings us to the notion of Boolean connexive logic. Boolean algebras are defined in terms of ∧, ∨, ¬. In Boolean connexive logic these connectives behave in classical way. It made us to refer to George Boole here. We can eliminate a second counterexample and consider connexive logics with material implication. It hardly know lead to promising research area. Anyway we could call such logics, a material connexive logics. Obviously we could eliminate both the counterexamples. It would bring us to connexive logics which are neither Boolean not material. In this lecture we concetrate on Boolean connexive logics. We indicate a numer of possible desiderata strengthening Aristotle and Boethius' theses. We investigate them by means of relating semantics. A relating semantics has its origins in Epstein and Walton papers. However in its full generality it has been proposed by Jarmuek and Kaczkowski in [4]. It is extensively studied among others in [3], [5], [10]. The general idea of relating semantics is based on the relating relation R. The fact that ARB – sentences A and B relate with respect to R – could be interpreted in many ways depending on the motivations of a given logical system. For example, A and B could be related causally, they could be related in the sense of time order, they could have a common content. Generally, two sentences are related because they have something in common. In Boolean connexive logics only implication depends on a relating relation R. The truth conditions for the propositional letters and ∧, ∨, and ¬ remain standard, i.e. as in classical logic. Only implication → has an intensional nature, it depends on a relation R: 〈v,R〉 ⊨ A → B iff [〈v,R〉 ⊭ A or 〈v,R〉 ⊨ B] & ARB. By a minimal Boolean connexive logic we mean the least set of sentences containing all classical tautologies expressed by means of ∧, ∨, ¬, (A1), (A2), (B1), (B2), (A → B) ⊃ (A ⊃ B) and closed under substitutions and modus ponens with respect to ⊃. ⊃ denotes material implication. Let JT denote a class of all relations R such that R is (a1), (a2), (b1), (b2). Let JT¬ denote a class of all relations from JT satisfying (c1), where:
In [6] we characterized Boolean connexive logics by means of relating semantics. Then Mateusz Klonowski (forthcoming) made this result stronger. Klonowski proved that the class JT determines minimal Boolean connexive logics. The class JT¬ determines the least Boolean connexive logics satisfying the following two axioms: (A → B) ⊃ (¬¬A → ¬¬B) (A → B) ⊃ ((¬A → ¬B) ∨ (¬A ∧ B)). In [2] Estrada-González and Ramírez-Cámara consider a number of properties added to AB. They used terms hyper-connexive and totally connexive logics. Malinowski and Nicolás-Francisco in [9] analyzed it in terms of relating semantics for Boolean connexive logcs. In particular they show that Minimal Boolean Connexive Logic (or alternatively the logic determined by JT) is Abelardian, strongly consistent, Kapsner strong and antiparadox. They also construct examples showing that it is not simplificative, neither conjunction-idempotent nor strongly inconsistent logics. Malinowski and Nicolás-Francisco also describe in terms of relating semantics an interrelation between hyper-connexive logics and JT logic. In the last part we remind less known Barbershop paradox published by Lewis Carrol in 1894 [1], see also [8], [10]. We show that if interpreted by means of material implication paradox reduces to simple paralogism. Then we interpret it by means of connexive implication. We develop relating semantics for Boolean connexive logics to eludicate Barbershop paradox. References: [1] Lewis Carroll (1894): A logical paradox. Mind 3(11), pp. 436–438, doi:10.1093/mind/III.11.436. [2] Luis Estrada-González & Elisngela Ramírez-Cámara (2016): A Comparison of Connexive Logics. The If- CoLog Journal of Logics and their Applications 3(3), pp. 341–355. [3] Tomasz Jarmużek (2021): Relating semantics as fine-grained semantics for intensional propositional logics. In Alessandro Giordani & Jacek Malinowski, editors: Logic in High Definition. Trends in Logical Semantics, Trends in Logic 56, Springer, Cham, pp. 13–30, doi:10.1007/978-3-030-53487-5_2. [4] Tomasz Jarmużek & Bartosz J. Kaczkowski (2014): On some logic with a relation imposed on formulae: Tableau system F. Bulletin of the Section of Logic 43(1/2), pp. 53–72. [5] Tomasz Jarmużek & Mateusz Klonowski (2021): Some intensional logics defined by relating semantics and tableau systems. In Alessandro Giordani & Jacek Malinowski, editors: Logic in High Definition. Trends in Logical Semantics, Trends in Logic 56, Springer, Cham, pp. 31–48, doi:10.1007/978-3-030-53487-5_3. [6] Tomasz Jarmużek & Jacek Malinowski (2019): Boolean Connexive Logics: Semantics and tableau approach. Logic and Logical Philosophy 28(3), pp. 427–448, doi:10.12775/LLP.2019.003. [7] Tomasz Jarmużek & Jacek Malinowski (2019): Modal Boolean Connexive Logics: Semantics and tableau approach. Bulletin of the Section of Logic 48(3), pp. 213–243, doi:10.18778/0138-0680.48.3.05. [8] Jacek Malinowski (2019): Barbershop Paradox and Connexive Implication. Ruch Filozoficzny (Philosophical Movement) 75(2), pp. 109–115, doi:10.12775/RF.2019.023. [9] Jacek Malinowski & Ricardo Arturo Nicolás-Francisco: Relating semantics for hyper-connexive and totally connexive logics. Forthcoming. [10] Jacek Malinowski & Rafał Palczewski (2021): Relating Semantics for Connexive Logic. In Alessandro Giordani & Jacek Malinowski, editors: Logic in High Definition. Trends in Logical Semantics, Trends in Logic 56, Springer, Cham, pp. 49–65, doi:10.1007/978-3-030-53487-5_4. |
Enter here.