Download PDFOpen PDF in browserCurrent version

Note on the Odd Perfect Numbers

EasyChair Preprint no. 8121, version 5

Versions: 12345678910history
7 pagesDate: June 2, 2022


The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Sol{\'e} and and Planat stated that the Riemann Hypothesis is true if and only if the inequality $\frac{\pi^2}{6} \times \prod_{q\leq q_{n}}\left(1+\frac{1}{q} \right) >e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 3$, where $\theta(x)$ is the Chebyshev function and $\gamma\approx 0.57721$ is the Euler-Mascheroni constant. We state the conjecture that $\frac{\pi^2}{6.4} \times \prod_{q \leq q_{n}} \left(1 + \frac{1}{q} \right) > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for infinitely many prime numbers $q_{n}$. Under the assumption of this conjecture and the Riemann Hypothesis, we prove that there is not any odd perfect number at all.

Keyphrases: Odd perfect numbers, prime numbers, Riemann hypothesis, sum-of-divisors function, Superabundant numbers

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
  author = {Frank Vega},
  title = {Note on the Odd Perfect Numbers},
  howpublished = {EasyChair Preprint no. 8121},

  year = {EasyChair, 2022}}
Download PDFOpen PDF in browserCurrent version