Download PDFOpen PDF in browser

StableDR: Stabilized Doubly Robust Learning for Recommendation on Data Missing Not at Random

EasyChair Preprint no. 13089

18 pagesDate: April 25, 2024


In recommender systems, users always choose the favorite items to rate, which leads to data missing not at random and poses a great challenge for unbiased evaluation and learning of prediction models. Currently, the doubly robust (DR) methods have been widely studied and demonstrate superior performance. However, in this paper, we show that DR methods are unstable and have unbounded bias, variance, and generalization bounds to extremely small propensities. Moreover, the fact that DR relies more on extrapolation will lead to suboptimal performance. To address the above limitations while retaining double robustness, we propose a stabilized doubly robust (StableDR) learning approach with a weaker reliance on extrapolation. Theoretical analysis shows that StableDR has bounded bias, variance, and generalization error bound simultaneously under inaccurate imputed errors and arbitrarily small propensities. In addition, we propose a novel learning approach for StableDR that updates the imputation, propensity, and prediction models cyclically, achieving more stable and accurate predictions. Extensive experiments show that our approaches significantly outperform the existing methods.

Keyphrases: bias, Debias, Doubly Robust, Recommender System

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
  author = {Haoxuan Li and Chunyuan Zheng and Peng Wu},
  title = {StableDR: Stabilized Doubly Robust Learning for Recommendation on Data Missing Not at Random},
  howpublished = {EasyChair Preprint no. 13089},

  year = {EasyChair, 2024}}
Download PDFOpen PDF in browser