Download PDFOpen PDF in browser

Cross-Domain Ambiguity Detection using Linear Transformation of Word Embedding Spaces

EasyChair Preprint no. 1785, version 2

Versions: 12history
6 pagesDate: January 27, 2020


The requirements engineering process is a crucial stage of the software development life cycle. It involves various stakeholders from different professional backgrounds, particularly in the requirements elicitation phase. Each stakeholder carries distinct domain knowledge, causing them to differently interpret certain words, leading to cross-domain ambiguity. This can result in misunderstanding amongst them and jeopardize the
entire project. This paper proposes a natural language processing approach to find potentially ambiguous words for a given set of domains. The idea is to apply linear transformations on word embedding models trained on different domain corpora, to bring them into a unified embedding space. The approach then finds words with divergent embeddings as they signify a variation in the meaning across the domains. It can help a requirements analyst in preventing misunderstandings during elicitation interviews and meetings by defining a set of potentially ambiguous terms in advance. The paper also discusses certain problems with the existing approaches and discusses how the proposed approach resolves them.

Keyphrases: Cross-domain ambiguity, linear transformation, Natural Language Processing, Requirements Engineering, Work embeddings

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
  author = {Vaibhav Jain and Sanskar Jain and Nishant Tanwar},
  title = {Cross-Domain Ambiguity Detection using Linear Transformation of Word Embedding Spaces},
  howpublished = {EasyChair Preprint no. 1785},

  year = {EasyChair, 2020}}
Download PDFOpen PDF in browser