|  | 
| | Download PDFOpen PDF in browser Download PDFOpen PDF in browserThe Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: the Physical, Mathematical and Philosophical InterpretationsEasyChair Preprint 705822 pages•Date: November 20, 2021AbstractA homeomorphism is built between the separable complex Hilbert space (quantummechanics) and Minkowski space (special relativity) by meditation of quantum information
 (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a
 reference frame within a system and its unambiguous counterpart out of the system. The same
 idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way
 for proving it, more concise and meaningful physically. Furthermore, the conjecture can be
 generalized and interpreted in relation to the pseudo-Riemannian space of general relativity
 therefore allowing for both mathematical and philosophical interpretations of the force of
 gravitation due to the mismatch of choice and ordering and resulting into the “curving of
 information” (e.g. entanglement). Mathematically, that homeomorphism means the invariance
 to choice, the axiom of choice, well-ordering, and well-ordering “theorem” (or “principle”) and
 can be defined generally as “information invariance”. Philosophically, the same
 homeomorphism implies transcendentalism once the philosophical category of the totality is
 defined formally. The fundamental concepts of “choice”, “ordering” and “information” unify
 physics, mathematics, and philosophy and should be related to their shared foundations.
 Keyphrases: General Relativity, Hilbert space, Minkowski space, Poincaré conjecture, axiom of choice, choice, gravitation, information, ordering, pseudo-Riemannian space, quantum information, qubit, well-ordering | 
 | 
|