Satisfiability modulo theories (SMT) solvers have throughout the years been able to cope with increasingly expressive formulas, from ground logics to full first-order logic modulo theories. Nevertheless, higher-order logic within SMT (HOSMT) is still little explored. In this preliminary report we discuss how to extend SMT solvers to natively support higher-order reasoning without compromising their performances on FO problems. We present a pragmatic extension to the cvc4 solver in which we generalize existing data structures and algorithms to HOSMT, thus leveraging the extensive research and implementation efforts dedicated to efficient FO solving. Our evaluation shows that the initial implementation does not add significant overhead to FO problems and its performance is on par with the encoding-based approach for HOSMT. We also discuss an alternative extension being implemented in veriT, in which new data structures and algorithms are being developed from scratch to best support HOSMT, thus avoiding the inherent difficulties of generalizing in a graceful way existing infrastructure not indented to higher-order reasoning.