Tags:Agda, axiom of choice, division, homotopy type theory and set theory
Abstract:
Natural numbers are isomorphism classes of finite sets and one can look for operations on sets which, after quotienting, allow recovering traditional arithmetic operations. Moreover, from a constructivist perspective, it is interesting to study whether those operations can be performed without resorting to the axiom of choice (the use of classical logic is usually necessary). Following the work of Bernstein, Sierpiński, Doyle and Conway, we study here ``division by two'' (or, rather, regularity of multiplication by two). We provide here a full formalization of this operation on sets, using the cubical variant of Agda, which is an implementation of the homotopy type theory setting, thus revealing some interesting points in the proof. Moreover, we show that this construction extends to general types, as opposed to sets.