Watershed prioritization has become increasingly crucial for managing natural resources, especially the watersheds. A useful decision support tool to provide appropriate weights to different morphological attributes with lineage with soil erosion is required to identify environmentally stressed areas for the watershed resources. This study examines the Western Nayar watershed delineation and further examination of the watershed's morphometric parameters. The morphometric parameters were quantified under the linear, areal, and relief heads for the watershed. The prioritization of sub-watersheds was done by the fuzzy analytic hierarchy process (FAHP). The study included nine morphometric parameters for forming a pairwise comparison matrix. The fuzzy analytic hierarchy process was employed for assigning the suitable weights to morphometric parameters, and further, these weights are normalized to assign the final ranks to the sub-watershed. In Western Nayar, SW9 got the highest priority, and SW1 was categorized as the least priority. The results were validated by the consistency ratio index, which depends on the matrix consistency index's size that should be less than 10%. The consistency index of the present study was found to be 2%.
Morphometric Parameters Based Prioritization of a Mid-Himalayan Watershed Using Fuzzy Analytic Hierarchy Process