Tags:combinatory logic, lambda calculus, metric spaces and quantitative algebras

Abstract:

We explore the possibility of extending Mardare et al.'s quantitative algebras to the structures which naturally emerge from Combinatory Logic and the lambda-calculus. First of all, we show that the framework is indeed applicable to those structures, and give soundness and completeness results. Then, we prove some negative results which clearly delineate to which extent categories of metric spaces can be models of such theories. We conclude by giving several examples of non-trivial higher-order quantitative algebras.