View: session overviewtalk overviewside by side with other conferences

09:00 | Parity Games - Part 1 |

11:00 | Parity Games - Part 2 |

14:00 | Infinite-Duration Richman Bidding Games SPEAKER: Guy Avni ABSTRACT. Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the {\em bidding} mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate {\em budgets}, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. Reachability bidding games, called {\em Richman games}, have been studied in \cite{LLPU96,LLPSU99}. There, a central question is the existence and computation of {\em threshold} budgets; namely, a value $t \in [0,1]$ such that if \PO's budget exceeds $t$, he can win the game, and if \PT's budget exceeds $1-t$, he can win the game. We focus on parity and mean-payoff games. We show the existence of threshold budgets and show that the complexity of finding them coincides with the $NP \cap coNP$ complexity of reachability bidding games. The solution for mean-payoff consists of our most technically challenging contribution, where we construct optimal strategies for the players while extending and generalizing the probabilistic connection that was known for reachability bidding games. |

14:40 | SPEAKER: Antonio Di Stasio ABSTRACT. In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called SymPGSolver, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been. |

16:00 | Quantifying Bounds in Strategy Logic SPEAKER: Bastien Maubert ABSTRACT. Program synthesis automatically constructs programs from specifications. Strategy Logic is a powerful specification language whose goal is to give theoretical foundations for program synthesis in a multi-agent setting. One limitation of Strategy Logic is that it is purely qualitative. For instance it cannot specify quantitative properties of executions such as "every request is quickly granted", or quantitative properties of trees such as "most executions of the system terminate". In this work, we extend Strategy Logic to include quantitative aspects in a way that can express bounds on "how quickly" and "how many". We define Prompt Strategy Logic, which encompasses Prompt LTL (itself an extension of LTL with a prompt eventuality temporal operator), and we define Bounded-Outcome Strategy Logic which has a bounded quantifier on paths. We supply a general technique, based on the study of automata with counters, that solves the model-checking problems for both these logics. |

16:40 | Strategy Logic with Imperfect Information SPEAKER: Bastien Maubert ABSTRACT. We introduce an extension of Strategy logic for the imperfect-information setting, called SLii, and study its model-checking problem. As this logic naturally captures multi-player games with imperfect information, the problem turns out to be undecidable. We introduce a syntactical class of "hierarchical instances" for which, intuitively, as one goes down the syntactic tree of the formula, strategy quantifications are concerned with finer observations of the model. We prove that model-checking SLii restricted to hierarchical instances is decidable. This result, because it allows for complex patterns of existential and universal quantification on strategies, greatly generalises previous ones, such as decidability of multi-player games with imperfect information and hierarchical observations, and decidability of distributed synthesis for hierarchical systems. |

17:20 | Dependences in Strategy Logic SPEAKER: Nicolas Markey ABSTRACT. Strategy Logic (SL) is a very expressive temporal logic for specifying and verifying properties of multi-agent systems: in SL, one can quantify over strategies, assign them to agents, and express LTL properties of the resulting plays. Such a powerful framework has two drawbacks: first, model checking SL has non-elementary complexity; second, the exact semantics of SL is rather intricate, and may not correspond to what is expected. In this paper, we focus on strategy dependences in SL, by tracking how existentially-quantified strategies in a formula may (or may not) depend on other strategies selected in the formula, revisiting the approach of [Mogavero et al., Reasoning about strategies: On the model-checking problem, 2014]. We explain why elementary dependences, as defined by Mogavero et al., do not exactly capture the intended concept of behavioral strategies. We address this discrepancy by introducing timeline dependences, and exhibit a large fragment of SL for which model checking can be performed in 2EXPTIME under this new semantics. |