Tags:aerospace network, Ethernet, Field programmable, mixed signal design, open source, rad hard IP core, sensor network, space chip, space electronics, space FPGA, space telescope, spectrometer, time-triggered Ethernet and TMR tool
Abstract:
Field Programmable Gate Array (FPGA) technology has been used extensively in space applications where the natural radiation environment presents major challenges to electronic parts. Commercial FPGA technology is trending to deep nano-meter silicon processes, which impacts the availability of radiation resilience FPGA chips. Space systems require long timeframes for development and launch, and often the electronics and code may become obsolete or require updating before the system can be launched. FPGA logic/fabric-size continues to grow dramatically which allows and practically requires more and more IP cores to be integrated within a chip. New IP cores and tools will be needed to enable space designs with commercial FPGA technology to withstand radiation. This paper discusses the challenges in designing FPGA-based space systems and potential open-source and commercial technologies that will be useful to space application developers. It also references an ongoing FPGA based space telescope spectrometer design to discuss different aspects of complex FPGA design with mixed analog and digital circuits.
Challenges in FPGA Design for Complex, High Performance Space Applications