Tags:Capacity credit, compressed air energy storage systems, distribution network, load flow analysis, optimal allocation and wind power generation
Abstract:
The introduction of variable generation and environmental dependency due to the integration of renewable energy sources (RES) changes the dynamics and priorities of generation expansion planning. This paper aims to develop and propose an optimal strategy for generation expansion model considering wind turbine (WTG) generation system. The problem is formulated on the concept of multi-area power system standards and the derivation of an optimal location of the WTG with compressed air energy storage system (CAESS) in the energy mix of the power network. Ensuring that a maximum capacity credit is achieved with WTG incorporation. The objective function in this study, is based on the effective load carrying capability (ELCC) that is utilized to quantify the efficacy of the capacity credit methodology. The ELCC parametric index ensures the reliability standards of the existent system in concurrence with the introduction of additional loads, that is basically grid expansion. Therefore, an evaluative analytical study is performed to increase the dispatchability and availability of the renewable energy sources. The proposed methodology is evaluated and validated on a multi-area system wherein, each area has a pre-existing capacity, load profile, wind generation profile, and reliability data sets.
Maximizing Capacity Credit in Generation Expansion Planning for Wind Power Generation and Compressed Air Energy Storage System