Tags:cardinality encodings, prototyping, python, SAT solvers and toolkit
Abstract:
Boolean satisfiability (SAT) solvers are at the core of efficient approaches for solving a vast multitude of practical problems. Moreover, albeit targeting an NP-complete problem, SAT solvers are increasingly used for tackling problems beyond NP. Despite the success of SAT in practice, modeling with SAT and more importantly implementing SAT-based problem solving solutions is often a difficult and error-prone task. This paper proposes the PySAT toolkit, which enables fast Python-based prototyping using SAT oracles and SAT-related technology. PySAT provides a simple API for working with a few state-of-the-art SAT oracles and also integrates a number of cardinality constraint encodings, all aiming at simplifying the prototyping process. Experimental results presented in the paper show that PySAT-based implementations can be as efficient as those written in a low-level language.
PySAT: A Python Toolkit for Prototyping with SAT Oracles