Tags:automatic theorem provers, higher-order logic, higher-order unification and superposition calculus
Abstract:
We designed a superposition calculus for a clausal fragment of extensional polymorphic higher-order logic that includes anonymous functions but excludes Booleans. The inference rules work on βη-equivalence classes of λ-terms and rely on higher-order unification to achieve refutational completeness. We implemented the calculus in the Zipperposition prover and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is a suitable basis for higher-order reasoning.