Tags:3D avatar, computer animation and human pose estimation
Abstract:
Generating immersive virtual reality avatars is a challenging task in VR/AR applications, which maps physical human body poses to avatars in virtual scenes for an immersive user experience. However, most existing work is time-consuming and limited by datasets, which does not satisfy immersive and real-time requirements of VR systems. In this paper, we aim to generate 3D real-time virtual reality avatars based on a monocular camera to solve these problems. Specifically, we first design a self-attention distillation network (SADNet) for effective human pose estimation, which is guided by a pre-trained teacher. Secondly, we propose a lightweight pose mapping method for human avatars that utilizes the camera model to map 2D poses to 3D avatar keypoints, generating real-time human avatars with pose consistency. Finally, we integrate our framework into a VR system, displaying generated 3D pose-driven avatars on Helmet-Mounted Display devices for an immersive user experience. We evaluate SADNet on two publicly available datasets. Experimental results show that SADNet achieves a state-of-the-art trade-off between speed and accuracy. In addition, we conducted a user experience study on the performance and immersion of virtual reality avatars. Results show that pose-driven 3D human avatars generated by our method are smooth and attractive.