Tags:Climate change, Experiment, Heat and moisture transfer, Numerical simulation and Validation
Abstract:
Future climate is expected to be warmer, more humid, and cloudier with more frequent extreme weather conditions. Current building design should consider these changes as they can significantly influence the function of buildings in the future. Here, we study common building envelope assembly subjected to different climatic scenarios. An experiment was set up to validate a numerical model, which is further applied to assess hygrothermal performance (heat and moisture transfer) of the building envelope subjected to different boundary conditions. The assessment is provided via Finnish mould growth model that identifies risk of biological growth through dynamic hygrothermal conditions. Finnish meteorological institute provides data that predicts the climate in 2030, 2050 and 2100. The humidity inside the building envelope is assumed to increase slightly in time, however, increased temperature in the future may cause more favorable conditions for mould growth, especially, if mould sensitive building materials are used. The hygrothermal assessment of building structures with consideration of climate change in structural design is a key factor to provide sustainable building designs. Numerical model was successfully validated with experiments providing data within tolerances of measurement equipment.
Validation of Hygrothermal Numerical Simulation with Experiment for Future Climate Control