Interpolants from Clausal Proofs

Arie Gurfinkel ${ }^{1}$ Yakir Vizel ${ }^{2}$

iPRA 2014
 Vienna, Austria

1. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
2. Computer Science Department, Technion, Israel

MiniDRUP

SAT

- SAT with DRUP proofs
- Interpolationoriented BCP in Trim
- Learn sharedderived clauses in Replay

CDCL SAT solvers

- Check satisfiability of a CNF formula - CNF is conjunction of clauses and
- Clause is a disjunction of literals
- Basic steps:
- Arbitrary decisions for un-assigned vars
- Propagate values (BCP)
- Analyze conflicts and change decisions

SAT solvers can generate refutation proofs

The Implication Graph (BCP)

Decision

Propositional Resolution

Analyzing a Conflict

- Decisions made by the SAT solver may lead to a conflict
- A clause is evaluated to false under the current assignment
- The implication graph is used to guide resolution steps
- The result is a learnt clause
- Prevents the same conflict from re-appearing

Refutation Proofs

- A formula is UnSAT when the empty clause can be derived from the original formula
- Resolution proof
- A DAG that tracks resolution steps leading from the original clauses to the empty clause
- Leaves - original clauses
- Intermediate nodes - learnt/derived clauses
- Clausal proof
- A sequence of learnt clauses
- In the order they are learnt

Conflict Clauses

$$
X=\neg a \wedge(a \vee \neg b) \wedge(b \vee c \vee \neg d) \wedge^{\prime}(b \vee d)
$$

Decision

(c)

Learnt clause

Resolution Proof

Clausal Proof

- Record learnt clauses in the order they are learnt
- A learnt clause is derived by Trivial Resolution from some previous clauses
- If prior to learning c, the CNF is X, then c is derived by Trivial Resolution if running BCP on $X \wedge \neg c$ leads to a conflict
- for our example, clausal proof is $\langle X, c\rangle$

Clausal Proof

Clausal Proof

- $\left\langle X,\left(g_{2} \vee g_{3}\right),\left(g_{3}\right)\right\rangle$
- $X \wedge \neg g_{2} \wedge \neg g_{3}$
$-\neg a_{1}$
$-g_{1}, \neg g_{1} \rightarrow$ conflict

$$
x
$$

Clausal Proof

- $\left\langle X,\left(g_{2} \vee g_{3}\right),\left(g_{3}\right)\right\rangle$
- $X \wedge\left(g_{2} \vee g_{3}\right) \wedge \neg g_{3}$
$-g_{2}$
$-\neg g_{2} \rightarrow$ conflict

DRUP Proof

Marijn et al. FMCAD'13

- Extends a clausal proof by tracking deleted clauses
- A SAT solver deletes learnt clauses
- $\left\langle X, c_{1}, c_{2}, c_{3}, c_{2}{ }^{\star}, c_{4}, c_{1}{ }^{*}, c_{3}{ }^{\star}, \ldots\right\rangle$ - Why?
- Introduced for SAT-solvers certification

MiniDRUP

SAT

Interpolants

- Given an unsatisfiable pair (A, B) of propositional formulas $-A(X, Y) \wedge B(Y, Z)$ is unsatisfiable
- There exists a formula I such that:
$-A \rightarrow I$
$-I \wedge B$ is unsatisfiable
- I is over the common variables of A and B

Resolution Proof

McMillan's Method

Clausal Proof

- $\left\langle X,\left(g_{3}\right)\right\rangle$
- $X \wedge \neg g_{3}$
$-\neg g_{2}$
$-\neg a_{1}$
$-g_{1}, \neg g_{1} \rightarrow$ conflict

$$
X
$$

Conflict Clauses

Shared Derivable Clauses

- Given an unsatisfiable pair (A, B) of propositional formulas
- A clause c is shared-derivable iff $-c$ is over the common variables of A, B $-c$ is derived using only A clauses
- Or, A => c

Partial CNF Interpolants

- Given an unsatisfiable pair (A, B) of propositional formulas
- Find shared-derivable clauses in the proof and
- Log them as a CNF formula 9
- Treat them as B clauses during the computation
- Interpolant is I ^g

Partial CNF Interpolants

Sequence Interpolants

- Given an unsatisfiable tuple (A, B, C) of propositional formulas
$-A(X, Y) \wedge B(Y, Z) \wedge C(Z, W)$ is unsatisfiable
- There exist formulae I_{1}, I_{2} such that:
$-\mathrm{A} \rightarrow \mathrm{I}_{1}$
$-I_{1} \wedge B \rightarrow I_{2}$
$-I_{2} \wedge C \rightarrow$ FALSE
- I_{1} is over the common variables of A and (B, C)
- I_{2} is over the common variables of (A, B) and C

Sequence Interpolants

- A sequence of partial CNFs
- It is more complex to maintain the sequence property
- A clause is shared-derivable iff:
- It is derived using only shared-derivable clauses from previous partitions and from clauses within its own partition

Sequence Interpolants

MiniDRUP

SAT

Restructuring Proofs

- Proofs generally do not have this "special" structure
- Need to force this structure on the proof
- CNF interpolants are exponentially weaker than general interpolants
- Must be efficient
- We do not want to disturb the SAT solver

Restructuring Proofs

- Observation/Intuition - let c be a clause over shared vocabulary then one of the following must hold:
- c is shared-derivable
- c can be derived using shared-derivable clauses

Experiments

Info

- Visit our web site
- http://arieg.bitbucket.org/avy/
- Come to our CAV talk...

Thank You

