

A Tree-based Modular SMT Solver

Georg Schadler Georg Hofferek

A Tree-based Modular SMT Solver

Georg Schadler

Outline

- Motivation
- Proof structure, requirements & properties
- Implementation & example
- Theory checks & interpolation
- Outlook & conclusion

Motivation

Motivation

- Synthesize multiple Boolean control signals e.g. for a pipelined processor.
- Specification given as a quantified firstorder formula.
- Uninterpreted functions to abstract specification

Motivation Recap

- 1. Construct unsatisfiable SMT formula from specification and compute proof
- 2. Craig interpolation to compute multiple coordinated interpolants.
- 3. Interpolants implement the Boolean control signals.

Refutation Proof

- Proof requires two properties:
 - Local-first

Local literals are resolved before global literals

Colorable

No literals or leaves with symbols from two partitions

Proof Requirements

Proof Requirements

$$\neg \varphi \left(\vec{a}, \vec{b}_{0}, 0, 0 \right) \land \neg \varphi \left(\vec{a}, \vec{b}_{1}, 1, 0 \right) \land \neg \varphi \left(\vec{a}, \vec{b}_{2}, 0, 1 \right) \land \neg \varphi \left(\vec{a}, \vec{b}_{3}, 1, 1 \right)$$

Colorability

Partitions \approx Colors: $\neg \Phi_{00}(\vec{a}, \vec{b}_{00}) \land \neg \Phi_{10}(\vec{a}, \vec{b}_{10}) \land \neg \Phi_{01}(\vec{a}, \vec{b}_{01}) \land \neg \Phi_{11}(\vec{a}, \vec{b}_{11})$

Local Symbols: \vec{b}_{00} , \vec{b}_{10} , \vec{b}_{01} , \vec{b}_{11} (colored) Global Symbols: \vec{a} (colorless)

Colorable: (x = y), (u = v), (w = z)Non-colorable: (x = u)

No <u>literals</u> or <u>leaves</u> with symbols from two partitions

Implementation

Implementation

Control signals can depend on inputs that are independent from each other

$$\forall \vec{a} \exists \vec{c} \forall \vec{a}' \exists \vec{c}' \forall \vec{a}'' \exists \vec{c}'' \dots \Phi$$

- 1 level per ∀ ∃ alternation
- $2^{|\vec{a}|}$ nodes per level

Implementation

Input Partitions ϕ_i

A Tree-based Modular SMT Solver

Theory Check

Craig Interpolation $CNF(\Phi) = C_1 \land C_2 \land C_3 \land \dots \land C_{n-1} \land C_n = \bot$ A B Interpolant I:

- $A \rightarrow I$
- $I \rightarrow \neg B$, in other words: $I \wedge B = \bot$
- $V(I) \subseteq V(A) \cap V(B)$

Interpolant contains only global symbols.

A Tree-based Modular SMT Solver

Georg Schadler

Proof production

Root node resolves only over global literals

Premises of proof in root node are proofs of child nodes

Current State & Outlook

 Prototype implemented ("Proof of concept") with MiniSat + MathSAT

• Relativly good runtime but much optimisation potential...

• Currently implementing proof production.

Conclusion

- Modular SMT Solving
 - Colorable and local-first proof directly from SMT solver.
 - Possible for all theories with interpolants in same theory.
- Craig Interpolation
 - Produces colorable blocking clauses
 - Multiple coordinated interpolants from just one proof
- Therefore the world is now a slightly better place ③

Thank You!

Questions?

A Tree-based Modular SMT Solver

Georg Schadler

Appendix

Specification

Specification

Correctness: First-Order Logic Formula Φ

Important Building Blocks:

- Array Variables r_addr
 - Addressable Memories
 - Uninterpreted Functions & Predicates
 - Combinational Circuits
 - Domain Variables
 - Single Element Storage
 - Primary Inputs/Outputs

w_addr

w_data

Mem

r data

Certificate via Interpolation

Certificate via Interpolation

- $\Psi = \forall mem, reg, pipelinestate.$ $\exists stall, forward.$ $\forall mem', reg', pipelinestate'. \Phi$
- *stall, forward*: **Boolean** control signals
- *mem, reg, pipelinestate*: Uninterpreted domain

Compute **Certificates**:

(*stall*, *forward*) = *f*(*mem*, *reg*, *pipelinestate*)

Certificate via Interpolation

•
$$\Psi = \forall \vec{a}$$
. $\exists \vec{c}$. $\forall \vec{b}$. $\Phi(\vec{a}, \vec{b}, \vec{c})$
- Ψ is valid

• Function $\vec{c} = \sigma(\vec{a})$

• Such that:
$$\Phi\left(\vec{a}, \vec{b}, \sigma(\vec{a})\right)$$
 is valid

Interpolant $I(\vec{a})$:

IAIK

- $\neg \Phi(\vec{a}, 0, \vec{b}_0) \rightarrow I$
 - I is 1, whenever 0 not allowed
- $I \to \Phi(\vec{a}, 1, \vec{b}_1)$
 - Whenever I is 1, 1 is allowed

A Tree-based Modular SMT Solver

Sample Application

A Processor

A Pipelined Processor

IAIK

A Pipelined Processor

Craig Interpolation

Craig Interpolation $CNF(\Phi) = C_1 \land C_2 \land C_3 \land \dots \land C_{n-1} \land C_n = \bot$ A B Interpolant I:

- $A \to I$
- $I \rightarrow \neg B$, in other words: $I \land B = \bot$
- $V(I) \subseteq V(A) \cap V(B)$

