
Feasible Interpolation in Proof Systems based on
Integer Linear Programming

Pavel Pudlák

Mathematical Institute, Academy of Sciences, Prague

Vienna 17.7.2014

[1]



Overview

1. Feasible interpolation

2. Linear programing

3. Cutting Planes

4. Lovász-Schrijver system

5. Semidefinite programing

6. Stronger Lovász-Schrijver systems

[2]



Feasible Interpolation

Theorem (Craig’s Interpolation Theorem in Propositional
Calculus)
Let A(x̄ , ȳ) and B(x̄ , z̄) be propositions, where x̄ , ȳ , z̄ are strings of
propositional variables and ȳ , z̄ are disjoint. If

` A(x̄ , ȳ) → B(x̄ , z̄),

then there exists a proposition C (x̄) such that

` A(x̄ , ȳ) → C (x̄) and ` C (x̄) → B(x̄ , z̄).

Krajíček’s Idea:
If A(x̄ , ȳ) → B(x̄ , z̄) has a short proof, then C should be a small (circuit).

[3]



Feasible Interpolation

Theorem (Craig’s Interpolation Theorem in Propositional
Calculus)
Let A(x̄ , ȳ) and B(x̄ , z̄) be propositions, where x̄ , ȳ , z̄ are strings of
propositional variables and ȳ , z̄ are disjoint. If

` A(x̄ , ȳ) → B(x̄ , z̄),

then there exists a proposition C (x̄) such that

` A(x̄ , ȳ) → C (x̄) and ` C (x̄) → B(x̄ , z̄).

Krajíček’s Idea:
If A(x̄ , ȳ) → B(x̄ , z̄) has a short proof, then C should be a small (circuit).

[3]



Reformulations

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that

I ` ¬C (x̄) → A(x̄ , ȳ) and

I ` C (x̄) → B(x̄ , z̄).

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ), and

I if C (ā) = 1, then ` A(ā, z̄)

If A(x̄ , ȳ) ∧ B(x̄ , z̄) ` ⊥, then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ) ` ⊥, and

I if C (ā) = 1, then ` A(ā, z̄) ` ⊥

[4]



Reformulations

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that

I ` ¬C (x̄) → A(x̄ , ȳ) and

I ` C (x̄) → B(x̄ , z̄).

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ), and

I if C (ā) = 1, then ` A(ā, z̄)

If A(x̄ , ȳ) ∧ B(x̄ , z̄) ` ⊥, then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ) ` ⊥, and

I if C (ā) = 1, then ` A(ā, z̄) ` ⊥

[4]



Reformulations

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that

I ` ¬C (x̄) → A(x̄ , ȳ) and

I ` C (x̄) → B(x̄ , z̄).

If ` A(x̄ , ȳ) ∨ B(x̄ , z̄), then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ), and

I if C (ā) = 1, then ` A(ā, z̄)

If A(x̄ , ȳ) ∧ B(x̄ , z̄) ` ⊥, then there exists C (x̄) such that for all
assignments x̄ → ā,

I if C (ā) = 0, then ` A(ā, ȳ) ` ⊥, and

I if C (ā) = 1, then ` A(ā, z̄) ` ⊥

[4]



The method of splitting proofs

Given a refutation d : {αj(x̄ , ȳ)} ∪ {βk(x̄ , z̄)} ` ⊥, and an assignment
x̄ → ā, construct d1 and d2 such that

I either d1 is a refutation of {αj(ā, ȳ)},
I or d2 is a refutation of {βk(ā, z̄)}

by splitting the proof into a y-part and a z-part:

Procedure

1. substitute d 7→ d [x̄/ā],

2. gradually replace φ(ā, ȳ , z̄) 7→ (φ1(ā, ȳ), φ2(ā, z̄)) so that

φ1(ā, ȳ) ∧ φ2(ā, z̄) ⇒ φ(ā, ȳ , z̄)

3. finally we get either (⊥, . . . ) or (. . . ,⊥)

[5]



The method of splitting proofs

Given a refutation d : {αj(x̄ , ȳ)} ∪ {βk(x̄ , z̄)} ` ⊥, and an assignment
x̄ → ā, construct d1 and d2 such that

I either d1 is a refutation of {αj(ā, ȳ)},
I or d2 is a refutation of {βk(ā, z̄)}

by splitting the proof into a y-part and a z-part:

Procedure

1. substitute d 7→ d [x̄/ā],

2. gradually replace φ(ā, ȳ , z̄) 7→ (φ1(ā, ȳ), φ2(ā, z̄)) so that

φ1(ā, ȳ) ∧ φ2(ā, z̄) ⇒ φ(ā, ȳ , z̄)

3. finally we get either (⊥, . . . ) or (. . . ,⊥)

[5]



The transformation must preserve initial formulas and logical rules. In
particular

αj(ā, ȳ) 7→ (αj(ā, ȳ),>),

βk(ā, z̄) 7→ (>, βk(ā, z̄))

If this can be done done in polynomial time, we have feasible
interpolation.

In Resolution

I φ(ā, ȳ , z̄) 7→ (φ1(ā, ȳ),>) and φ1(ā, ȳ) ⊆ φ(ā, ȳ , z̄), or

I φ(ā, ȳ , z̄) 7→ (>, φ2(ā, z̄)) and φ2(ā, z̄) ⊆ φ(ā, ȳ , z̄)

for all clauses in the proof.

[6]



The transformation must preserve initial formulas and logical rules. In
particular

αj(ā, ȳ) 7→ (αj(ā, ȳ),>),

βk(ā, z̄) 7→ (>, βk(ā, z̄))

If this can be done done in polynomial time, we have feasible
interpolation.

In Resolution

I φ(ā, ȳ , z̄) 7→ (φ1(ā, ȳ),>) and φ1(ā, ȳ) ⊆ φ(ā, ȳ , z̄), or

I φ(ā, ȳ , z̄) 7→ (>, φ2(ā, z̄)) and φ2(ā, z̄) ⊆ φ(ā, ȳ , z̄)

for all clauses in the proof.

[6]



Linear Programing

General problem

Given inequalities in Q

n∑
i=1

aijxi ≥ bj , j = 1, . . . ,m, (1)

and a vector ~c , find
max

∑
cixi

if it exists.

Decision problem

Decide if (1) has any solution ~x ∈ Qn.

[7]



Linear Programing

General problem

Given inequalities in Q

n∑
i=1

aijxi ≥ bj , j = 1, . . . ,m, (1)

and a vector ~c , find
max

∑
cixi

if it exists.

Decision problem

Decide if (1) has any solution ~x ∈ Qn.

[7]



Facts:

1. LP is solvable in polynomial time with exponential precision in
general, hence precisely in Q. In particular, the decision problem is
in P.

2. (Farkas’ Lemma) If (1) is unsolvable, then there exists a
non-negative linear combination of the inequalities that gives

0 ≥ 1

3. If an inequality E is a consequence of (1), then we can find in
polynomial time a positive linear combination that gives E (by
solving a dual problem).

Proof system for LP: use positive linear combinations to derive 0 ≥ 1.

Proof search is in polynomial time.

[8]



Integer Linear Programing

Find a solution of ∑
i

aijxi ≥ bj , j = 1, . . . ,m,

in Zn.

I The decision problem is NP-complete.

Two polytopes (or empty sets)

1. the polytope given by the inequalities,

2. the convex hull of the integral points.

We have to extend the LP proof system to obtain the smaller polytope.

[9]



Integer Linear Programing

Find a solution of ∑
i

aijxi ≥ bj , j = 1, . . . ,m,

in Zn.

I The decision problem is NP-complete.

Two polytopes (or empty sets)

1. the polytope given by the inequalities,

2. the convex hull of the integral points.

We have to extend the LP proof system to obtain the smaller polytope.

[9]



Integer Linear Programing

Find a solution of ∑
i

aijxi ≥ bj , j = 1, . . . ,m,

in Zn.

I The decision problem is NP-complete.

Two polytopes (or empty sets)

1. the polytope given by the inequalities,

2. the convex hull of the integral points.

We have to extend the LP proof system to obtain the smaller polytope.

[9]



Cutting Planes

The rounding up rule: ∑
i cixi ≥ d∑

idciexi ≥ dde

Theorem (Gomory, Chvátal)
Applying the rounding rule a sufficient number of times we get the convex
hull of the integral points (or the empty set if there are no such points).

[10]



Cutting Planes

The rounding up rule: ∑
i cixi ≥ d∑

idciexi ≥ dde

Theorem (Gomory, Chvátal)
Applying the rounding rule a sufficient number of times we get the convex
hull of the integral points (or the empty set if there are no such points).

[10]



The cutting plane proof system1 CP

1. axioms 0 ≤ xi ≤ 1 i = 1, . . . , n

2. positive linear combinations

3. the rounding rule

I simulates Resolution

I is stronger than Resolution (poly size proofs of PHP)

I has feasible interpolation

1Sometimes cutting planes is used as a generic name for all systems for ILP.
Then one has to specify that it is Gomory-Chvátal cutting plane system.

[11]



The cutting plane proof system1 CP

1. axioms 0 ≤ xi ≤ 1 i = 1, . . . , n

2. positive linear combinations

3. the rounding rule

I simulates Resolution

I is stronger than Resolution (poly size proofs of PHP)

I has feasible interpolation

1Sometimes cutting planes is used as a generic name for all systems for ILP.
Then one has to specify that it is Gomory-Chvátal cutting plane system.

[11]



Splitting a cutting plane proof

Apply the rules at each component separately:

∑
aiyi ≥ c 7→

∑
aiyi ≥ c | 0 ≥ 0

...∑
bjzj ≥ d 7→ 0 ≥ 0 |

∑
bjzj ≥ d

...∑
ciyi +

∑
djzj ≥ e 7→

∑
ciyi ≥ e1 |

∑
djzj ≥ e2

...
0 ≥ 1 7→ 0 ≥ f1 | 0 ≥ f2

where always e ≤ e1 + e2; in particular f1 > 0 or f2 > 0.

[12]



Quadratic inequalities

It is difficult to split a quadratic inequality into two.

Eg. y1z1 + · · ·+ ynzn ≥ a

We will write linear inequalities in the form∑
aixi − b ≥ 0;

and call
∑

aixi − b a linear polynomial.

[13]



Quadratic inequalities

It is difficult to split a quadratic inequality into two.

Eg. y1z1 + · · ·+ ynzn ≥ a

We will write linear inequalities in the form∑
aixi − b ≥ 0;

and call
∑

aixi − b a linear polynomial.

[13]



Lovász-Schrijver system LS
I initial inequalities are linear

I axioms

1. 0 ≤ xi ≤ 1
2. x2

i − xi = 0 (integrality)

I rules:

1. positive linear combinations
2. (multiplication) if L(x̄),K (x̄) are linear polynomials, then

L(x̄) ≥ 0 K (x̄) ≥ 0
L(x̄)K (x̄) ≥ 0

Properties:

I sound and complete [Lovász-Schrijver, 1991]

I simulates Resolution

I stronger than Resolution

[14]



Lovász-Schrijver system LS
I initial inequalities are linear

I axioms

1. 0 ≤ xi ≤ 1
2. x2

i − xi = 0 (integrality)

I rules:

1. positive linear combinations
2. (multiplication) if L(x̄),K (x̄) are linear polynomials, then

L(x̄) ≥ 0 K (x̄) ≥ 0
L(x̄)K (x̄) ≥ 0

Properties:

I sound and complete [Lovász-Schrijver, 1991]

I simulates Resolution

I stronger than Resolution

[14]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



example

x + y − 1
2 ≥ 0 given

x ≥ 0, 1− x ≥ 0, y ≥ 0, 1− y ≥ 0, x2 − x = 0, y2 − y = 0 axioms

xy ≥ 0 by multiplication

x − x2 + y − xy − 1
2 + 1

2x ≥ 0 multiplication by 1− x

1
2x + y − 1

2 ≥ 0 using x2 − x = 0 and xy ≥ 0

1
2x − 1

2xy + y − y2 − 1
2 + 1

2y ≥ 0 multiplication by 1− y

1
2x + 1

2y − 1
2 ≥ 0

x + y − 1 ≥ 0

[15]



Splitting an LS proof

We cannot split quadratic inequalities. Therefore we view segments
between linear inequalities as single steps.

We will gradually split the linear inequalities of a proof.

[16]



Splitting an LS proof

We cannot split quadratic inequalities. Therefore we view segments
between linear inequalities as single steps.

We will gradually split the linear inequalities of a proof.

[16]



Assuming we have split the previous linear inequalities, we can express
the next linear inequality as follows:

L1(ȳ)+

L2(z̄)+∑
i

ai (y2
i − yi ) +

∑
k

L3,k(ȳ)L4,k(ȳ)+

∑
j

bj(z2
i − zi ) +

∑
l

L5,l(z̄)L6,l(z̄)+

∑
h

L7,h(ȳ)L8,h(z̄) ≥ 0

Then all 5 parts are linear and the first 4 naturally split into a y-part and
a z-part.

[17]



Assuming we have split the previous linear inequalities, we can express
the next linear inequality as follows:

L1(ȳ)+

L2(z̄)+∑
i

ai (y2
i − yi ) +

∑
k

L3,k(ȳ)L4,k(ȳ)+

∑
j

bj(z2
i − zi ) +

∑
l

L5,l(z̄)L6,l(z̄)+

∑
h

L7,h(ȳ)L8,h(z̄) ≥ 0

Then all 5 parts are linear and the first 4 naturally split into a y-part and
a z-part.

[17]



We only need to split ∑
h

L7,h(ȳ)L8,h(z̄) ≥ 0

Note that after cancellations of terms it is a linear inequality that is a
consequence of the inequalities L7,h(ȳ) ≥ 0 and L8,h(z̄) ≥ 0. Hence it
has form ∑

h

αhL7,h(ȳ) +
∑

h

βhL8,h(z̄) ≥ 0

To find αhs and βhs we use a polynomial algorithm for linear programing.

In fact, we only need the constant terms of
∑

h αhL7,h(ȳ) and∑
h βhL8,h(z̄),

i.e., we need to split the constant term of
∑

h L7,h(ȳ)L8,h(z̄).

[18]



We only need to split ∑
h

L7,h(ȳ)L8,h(z̄) ≥ 0

Note that after cancellations of terms it is a linear inequality that is a
consequence of the inequalities L7,h(ȳ) ≥ 0 and L8,h(z̄) ≥ 0. Hence it
has form ∑

h

αhL7,h(ȳ) +
∑

h

βhL8,h(z̄) ≥ 0

To find αhs and βhs we use a polynomial algorithm for linear programing.

In fact, we only need the constant terms of
∑

h αhL7,h(ȳ) and∑
h βhL8,h(z̄),

i.e., we need to split the constant term of
∑

h L7,h(ȳ)L8,h(z̄).

[18]



Semidefinite programing

A symmetric matrix A ∈ Rn×n is positive semidefinite if for every vector
v ∈ Rn

v>Av ≥ 0.

Equivalently, if there are vectors v1, . . . , vn such that

Aij = v>i vj .

Another characterization: A quadratic form is semidefinite iff it is a sum
of squares of linear forms:∑

ij

Aijxixj =
∑
k

(
∑

i

bikxi )
2

[19]



Semidefinite programing

A symmetric matrix A ∈ Rn×n is positive semidefinite if for every vector
v ∈ Rn

v>Av ≥ 0.

Equivalently, if there are vectors v1, . . . , vn such that

Aij = v>i vj .

Another characterization: A quadratic form is semidefinite iff it is a sum
of squares of linear forms:∑

ij

Aijxixj =
∑
k

(
∑

i

bikxi )
2

[19]



A semidefinite programing problem is given by a set of linear inequalities
with variables xij and a linear function L(. . . xij . . . ).

We want to minimize L(. . . xij . . . ) subject to the inequalities and the
condition that {xij} is a positive semidefinite matrix.

I SDP is solvable in polynomial time (by the ellipsoid method, or the
interior point method)

[20]



A semidefinite programing problem is given by a set of linear inequalities
with variables xij and a linear function L(. . . xij . . . ).

We want to minimize L(. . . xij . . . ) subject to the inequalities and the
condition that {xij} is a positive semidefinite matrix.

I SDP is solvable in polynomial time (by the ellipsoid method, or the
interior point method)

[20]



A stronger Lovász-Schrijver system LS+

I add axioms of the form
L(x̄)2 ≥ 0

for all linear polynomials L.

Theorem (S. Dash 2001)
This system has feasible interpolation.

[21]



A stronger Lovász-Schrijver system LS+

I add axioms of the form
L(x̄)2 ≥ 0

for all linear polynomials L.

Theorem (S. Dash 2001)
This system has feasible interpolation.

[21]



Splitting proofs in LS+ (basic idea)

Given ∑
j

Kj(ȳ , z̄)2

we need to write it in the form∑
j

Lj(ȳ)2 +
∑

j

Mj(z̄)2 +
∑

j

2Lj(ȳ)Mj(z̄)

so that the quadratic terms of Lj(ȳ)2, Mj(z̄)2 and Lj(ȳ)Mj(z̄) are
canceled by the terms from the multiplication rule and integrality axioms.
The problem is how to split the constant terms in Kj(ȳ , z̄)2.

Finding such a representation of a quadratic polynomial in yi ’s (resp.
zi ’s) is equivalent to finding a representation of a positive semidefinite
matrix as a sum of rank 1 positive semidefinite matrices.

Thus this representation can be found by semidefinite linear programing.

[22]



Splitting proofs in LS+ (basic idea)

Given ∑
j

Kj(ȳ , z̄)2

we need to write it in the form∑
j

Lj(ȳ)2 +
∑

j

Mj(z̄)2 +
∑

j

2Lj(ȳ)Mj(z̄)

so that the quadratic terms of Lj(ȳ)2, Mj(z̄)2 and Lj(ȳ)Mj(z̄) are
canceled by the terms from the multiplication rule and integrality axioms.
The problem is how to split the constant terms in Kj(ȳ , z̄)2.

Finding such a representation of a quadratic polynomial in yi ’s (resp.
zi ’s) is equivalent to finding a representation of a positive semidefinite
matrix as a sum of rank 1 positive semidefinite matrices.

Thus this representation can be found by semidefinite linear programing.

[22]



Splitting proofs in LS+ (basic idea)

Given ∑
j

Kj(ȳ , z̄)2

we need to write it in the form∑
j

Lj(ȳ)2 +
∑

j

Mj(z̄)2 +
∑

j

2Lj(ȳ)Mj(z̄)

so that the quadratic terms of Lj(ȳ)2, Mj(z̄)2 and Lj(ȳ)Mj(z̄) are
canceled by the terms from the multiplication rule and integrality axioms.
The problem is how to split the constant terms in Kj(ȳ , z̄)2.

Finding such a representation of a quadratic polynomial in yi ’s (resp.
zi ’s) is equivalent to finding a representation of a positive semidefinite
matrix as a sum of rank 1 positive semidefinite matrices.

Thus this representation can be found by semidefinite linear programing.

[22]



Recap

1. CP — elementary

2. LS — linear programing

3. LS+ — semidefinite linear programing

[23]



Applications

I May be easier to find an LS proof than a linear program, or
semidefinite program for a given problem.

I Conditional lower bounds: if P 6= NP ∩ coNP, then there are
tautologies that do not have polynomial length proofs.

I Unconditional lower bounds using monotone interpolation.

[24]



Monotone interpolation and lower bounds

Theorem (Krajíček)
Given a refutation of d : {αj(x̄ , ȳ)} ∪ {βk(x̄ , z̄)} ` ⊥ where variables x̄
occur in {αj(x̄ , ȳ)} only positively, one can construct a monotone
Boolean circuit that interpolates these two sets and has size linear in the
size of d.

Theorem
The same for CP proofs and monotone real-valued circuits.

Using lower bounds on monotone Boolean and real-valued circuits for
certain functions, we get exponential lower bounds on the lengths of
Resolution and CP proofs.

[25]



Monotone interpolation and lower bounds

Theorem (Krajíček)
Given a refutation of d : {αj(x̄ , ȳ)} ∪ {βk(x̄ , z̄)} ` ⊥ where variables x̄
occur in {αj(x̄ , ȳ)} only positively, one can construct a monotone
Boolean circuit that interpolates these two sets and has size linear in the
size of d.

Theorem
The same for CP proofs and monotone real-valued circuits.

Using lower bounds on monotone Boolean and real-valued circuits for
certain functions, we get exponential lower bounds on the lengths of
Resolution and CP proofs.

[25]



Semantic CP

Fix k ∈ N. Allow positive linear combinations and any valid rule with at
most k assumptions.

Example For ai , b ∈ N, allow∑
aixi ≥ b

∑
aixi ≤ b

0 ≥ 1

if
∑

aixi = b has no solution. It is NP-hard to decide if it is a valid rule
(knapsack!).

[Hrubeš, 2014] An exponential lower bound based on monotone
interpolation and real-valued circuits.

[26]



Semantic CP

Fix k ∈ N. Allow positive linear combinations and any valid rule with at
most k assumptions.

Example For ai , b ∈ N, allow∑
aixi ≥ b

∑
aixi ≤ b

0 ≥ 1

if
∑

aixi = b has no solution. It is NP-hard to decide if it is a valid rule
(knapsack!).

[Hrubeš, 2014] An exponential lower bound based on monotone
interpolation and real-valued circuits.

[26]



Semantic CP

Fix k ∈ N. Allow positive linear combinations and any valid rule with at
most k assumptions.

Example For ai , b ∈ N, allow∑
aixi ≥ b

∑
aixi ≤ b

0 ≥ 1

if
∑

aixi = b has no solution. It is NP-hard to decide if it is a valid rule
(knapsack!).

[Hrubeš, 2014] An exponential lower bound based on monotone
interpolation and real-valued circuits.

[26]



No lower bounds are known for LS.

[S. Dash, 2001] Exponential lower bounds on a weaker version of LS
where xixj and xjxi do not cancel each other and the multiplication rule
has the form

L(x̄) ≥ 0
xL(x̄) ≥ 0, (1− x)L(x̄) ≥ 0

Conjecture
For proving lower bounds on LS proofs, we need lower bounds on a
stronger model of monotone computations.

monotone Boolean circuits → monotone real circuits → ???

[27]



No lower bounds are known for LS.

[S. Dash, 2001] Exponential lower bounds on a weaker version of LS
where xixj and xjxi do not cancel each other and the multiplication rule
has the form

L(x̄) ≥ 0
xL(x̄) ≥ 0, (1− x)L(x̄) ≥ 0

Conjecture
For proving lower bounds on LS proofs, we need lower bounds on a
stronger model of monotone computations.

monotone Boolean circuits → monotone real circuits → ???

[27]



Monotone LP programs

P: ∑
j

aijzj ≤
∑
k

bikxk + ci

aij , bik , ci ∈ R constants
zj ∈ R+, xk ∈ {0, 1} variables
i = 1, . . . , l , j = 1, . . . ,m, k = 1, . . . , n.

P computes a Boolean function f (x̄), if for every assignment ā to x̄

f (ā) = 1 ≡ P has a solution

The size of P is l + m + n.

Problem
Prove lower bounds on the size of monotone LP programs computing a
concrete Boolean functions.

[28]



Monotone LP programs

P: ∑
j

aijzj ≤
∑
k

bikxk + ci

aij , bik , ci ∈ R constants
zj ∈ R+, xk ∈ {0, 1} variables
i = 1, . . . , l , j = 1, . . . ,m, k = 1, . . . , n.

P computes a Boolean function f (x̄), if for every assignment ā to x̄

f (ā) = 1 ≡ P has a solution

The size of P is l + m + n.

Problem
Prove lower bounds on the size of monotone LP programs computing a
concrete Boolean functions.

[28]



THANK YOU

[29]



[30]


