Feasible Interpolation in Proof Systems based on Integer Linear Programming

Pavel Pudlák

Mathematical Institute, Academy of Sciences, Prague

Vienna 17.7.2014

Overview

1. Feasible interpolation
2. Linear programing
3. Cutting Planes
4. Lovász-Schrijver system
5. Semidefinite programing
6. Stronger Lovász-Schrijver systems

Feasible Interpolation

Theorem (Craig's Interpolation Theorem in Propositional Calculus)
Let $A(\bar{x}, \bar{y})$ and $B(\bar{x}, \bar{z})$ be propositions, where $\bar{x}, \bar{y}, \bar{z}$ are strings of propositional variables and \bar{y}, \bar{z} are disjoint. If

$$
\vdash A(\bar{x}, \bar{y}) \rightarrow B(\bar{x}, \bar{z}),
$$

then there exists a proposition $C(\bar{x})$ such that

$$
\vdash A(\bar{x}, \bar{y}) \rightarrow C(\bar{x}) \text { and } \vdash C(\bar{x}) \rightarrow B(\bar{x}, \bar{z}) .
$$

Feasible Interpolation

Theorem (Craig's Interpolation Theorem in Propositional Calculus)
Let $A(\bar{x}, \bar{y})$ and $B(\bar{x}, \bar{z})$ be propositions, where $\bar{x}, \bar{y}, \bar{z}$ are strings of propositional variables and \bar{y}, \bar{z} are disjoint. If

$$
\vdash A(\bar{x}, \bar{y}) \rightarrow B(\bar{x}, \bar{z}),
$$

then there exists a proposition $C(\bar{x})$ such that

$$
\vdash A(\bar{x}, \bar{y}) \rightarrow C(\bar{x}) \text { and } \vdash C(\bar{x}) \rightarrow B(\bar{x}, \bar{z}) .
$$

Krajíček's Idea:
If $A(\bar{x}, \bar{y}) \rightarrow B(\bar{x}, \bar{z})$ has a short proof, then C should be a small (circuit).

Reformulations

If $\vdash A(\bar{x}, \bar{y}) \vee B(\bar{x}, \bar{z})$, then there exists $C(\bar{x})$ such that
$-\vdash \neg C(\bar{x}) \rightarrow A(\bar{x}, \bar{y})$ and
$-\vdash C(\bar{x}) \rightarrow B(\bar{x}, \bar{z})$.

Reformulations

If $\vdash A(\bar{x}, \bar{y}) \vee B(\bar{x}, \bar{z})$, then there exists $C(\bar{x})$ such that
$-\vdash \neg C(\bar{x}) \rightarrow A(\bar{x}, \bar{y})$ and
$-\vdash C(\bar{x}) \rightarrow B(\bar{x}, \bar{z})$.

If $\vdash A(\bar{x}, \bar{y}) \vee B(\bar{x}, \bar{z})$, then there exists $C(\bar{x})$ such that for all assignments $\bar{x} \rightarrow \bar{a}$,

- if $C(\bar{a})=0$, then $\vdash A(\bar{a}, \bar{y})$, and
- if $C(\bar{a})=1$, then $\vdash A(\bar{a}, \bar{z})$

Reformulations

If $\vdash A(\bar{x}, \bar{y}) \vee B(\bar{x}, \bar{z})$, then there exists $C(\bar{x})$ such that
$-\vdash \neg C(\bar{x}) \rightarrow A(\bar{x}, \bar{y})$ and
$-\vdash C(\bar{x}) \rightarrow B(\bar{x}, \bar{z})$.

If $\vdash A(\bar{x}, \bar{y}) \vee B(\bar{x}, \bar{z})$, then there exists $C(\bar{x})$ such that for all assignments $\bar{x} \rightarrow \bar{a}$,

- if $C(\bar{a})=0$, then $\vdash A(\bar{a}, \bar{y})$, and
- if $C(\bar{a})=1$, then $\vdash A(\bar{a}, \bar{z})$

If $A(\bar{x}, \bar{y}) \wedge B(\bar{x}, \bar{z}) \vdash \perp$, then there exists $C(\bar{x})$ such that for all assignments $\bar{x} \rightarrow \bar{a}$,

- if $C(\bar{a})=0$, then $\vdash A(\bar{a}, \bar{y}) \vdash \perp$, and
- if $C(\bar{a})=1$, then $\vdash A(\bar{a}, \bar{z}) \vdash \perp$

The method of splitting proofs

Given a refutation $d:\left\{\alpha_{j}(\bar{x}, \bar{y})\right\} \cup\left\{\beta_{k}(\bar{x}, \bar{z})\right\} \vdash \perp$, and an assignment $\bar{x} \rightarrow \bar{a}$, construct d_{1} and d_{2} such that

- either d_{1} is a refutation of $\left\{\alpha_{j}(\bar{a}, \bar{y})\right\}$,
- or d_{2} is a refutation of $\left\{\beta_{k}(\bar{a}, \bar{z})\right\}$
by splitting the proof into a y-part and a z-part:

The method of splitting proofs

Given a refutation $d:\left\{\alpha_{j}(\bar{x}, \bar{y})\right\} \cup\left\{\beta_{k}(\bar{x}, \bar{z})\right\} \vdash \perp$, and an assignment $\bar{x} \rightarrow \bar{a}$, construct d_{1} and d_{2} such that

- either d_{1} is a refutation of $\left\{\alpha_{j}(\bar{a}, \bar{y})\right\}$,
- or d_{2} is a refutation of $\left\{\beta_{k}(\bar{a}, \bar{z})\right\}$
by splitting the proof into a y-part and a z-part:

Procedure

1. substitute $d \mapsto d[\bar{x} / \bar{a}]$,
2. gradually replace $\phi(\bar{a}, \bar{y}, \bar{z}) \mapsto\left(\phi_{1}(\bar{a}, \bar{y}), \phi_{2}(\bar{a}, \bar{z})\right)$ so that

$$
\phi_{1}(\bar{a}, \bar{y}) \wedge \phi_{2}(\bar{a}, \bar{z}) \Rightarrow \phi(\bar{a}, \bar{y}, \bar{z})
$$

3. finally we get either (\perp, \ldots) or (\ldots, \perp)

The transformation must preserve initial formulas and logical rules. In particular
$\alpha_{j}(\bar{a}, \bar{y}) \mapsto\left(\alpha_{j}(\bar{a}, \bar{y}), \top\right)$,
$\beta_{k}(\bar{a}, \bar{z}) \mapsto\left(\top, \beta_{k}(\bar{a}, \bar{z})\right)$
If this can be done done in polynomial time, we have feasible interpolation.

The transformation must preserve initial formulas and logical rules. In particular
$\alpha_{j}(\bar{a}, \bar{y}) \mapsto\left(\alpha_{j}(\bar{a}, \bar{y}), \top\right)$,
$\beta_{k}(\bar{a}, \bar{z}) \mapsto\left(\top, \beta_{k}(\bar{a}, \bar{z})\right)$
If this can be done done in polynomial time, we have feasible interpolation.

In Resolution

- $\phi(\bar{a}, \bar{y}, \bar{z}) \mapsto\left(\phi_{1}(\bar{a}, \bar{y}), \top\right)$ and $\phi_{1}(\bar{a}, \bar{y}) \subseteq \phi(\bar{a}, \bar{y}, \bar{z})$, or
- $\phi(\bar{a}, \bar{y}, \bar{z}) \mapsto\left(\top, \phi_{2}(\bar{a}, \bar{z})\right)$ and $\phi_{2}(\bar{a}, \bar{z}) \subseteq \phi(\bar{a}, \bar{y}, \bar{z})$
for all clauses in the proof.

Linear Programing

General problem

Given inequalities in \mathbb{Q}

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j} x_{i} \geq b_{j}, \quad j=1, \ldots, m \tag{1}
\end{equation*}
$$

and a vector \vec{c}, find

$$
\max \sum c_{i} x_{i}
$$

if it exists.

Linear Programing

General problem

Given inequalities in \mathbb{Q}

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j} x_{i} \geq b_{j}, \quad j=1, \ldots, m \tag{1}
\end{equation*}
$$

and a vector \vec{c}, find

$$
\max \sum c_{i} x_{i}
$$

if it exists.

Decision problem

Decide if (1) has any solution $\vec{x} \in \mathbb{Q}^{n}$.

Facts:

1. LP is solvable in polynomial time with exponential precision in general, hence precisely in \mathbb{Q}. In particular, the decision problem is in \mathbf{P}.
2. (Farkas' Lemma) If (1) is unsolvable, then there exists a non-negative linear combination of the inequalities that gives

$$
0 \geq 1
$$

3. If an inequality E is a consequence of (1), then we can find in polynomial time a positive linear combination that gives E (by solving a dual problem).

Proof system for LP: use positive linear combinations to derive $0 \geq 1$.
Proof search is in polynomial time.

Integer Linear Programing

Find a solution of

$$
\sum_{i} a_{i j} x_{i} \geq b_{j}, \quad j=1, \ldots, m
$$

in \mathbb{Z}^{n}.

- The decision problem is NP-complete.

Integer Linear Programing

Find a solution of

$$
\sum_{i} a_{i j} x_{i} \geq b_{j}, \quad j=1, \ldots, m
$$

in \mathbb{Z}^{n}.

- The decision problem is NP-complete.

Two polytopes (or empty sets)

1. the polytope given by the inequalities,
2. the convex hull of the integral points.

Integer Linear Programing

Find a solution of

$$
\sum_{i} a_{i j} x_{i} \geq b_{j}, \quad j=1, \ldots, m
$$

in \mathbb{Z}^{n}.

- The decision problem is NP-complete.

Two polytopes (or empty sets)

1. the polytope given by the inequalities,
2. the convex hull of the integral points.

We have to extend the LP proof system to obtain the smaller polytope.

Cutting Planes

The rounding up rule:

$$
\frac{\sum_{i} c_{i} x_{i} \geq d}{\sum_{i}\left\lceil c_{i}\right\rceil x_{i} \geq\lceil d\rceil}
$$

Cutting Planes

The rounding up rule:

$$
\frac{\sum_{i} c_{i} x_{i} \geq d}{\sum_{i}\left\lceil c_{i}\right\rceil x_{i} \geq\lceil d\rceil}
$$

Theorem (Gomory, Chvátal)
Applying the rounding rule a sufficient number of times we get the convex hull of the integral points (or the empty set if there are no such points).

The cutting plane proof system ${ }^{1}$ CP

1. axioms $0 \leq x_{i} \leq 1 \quad i=1, \ldots, n$
2. positive linear combinations
3. the rounding rule
${ }^{1}$ Sometimes cutting planes is used as a generic name for all systems for ILP. Then one has to specify that it is Gomory-Chvátal cutting plane system:

The cutting plane proof system ${ }^{1} \mathbf{C P}$

1. axioms $0 \leq x_{i} \leq 1 \quad i=1, \ldots, n$
2. positive linear combinations
3. the rounding rule

- simulates Resolution
- is stronger than Resolution (poly size proofs of PHP)
- has feasible interpolation

[^0]
Splitting a cutting plane proof

Apply the rules at each component separately:

$$
\begin{array}{ccccc}
\sum a_{i} y_{i} \geq c & \mapsto & \sum a_{i} y_{i} \geq c & \mid c & 0 \geq 0 \\
\vdots & & & \\
\sum b_{j} z_{j} \geq d & \mapsto & 0 \geq 0 & \sum b_{j} z_{j} \geq d \\
\vdots & & & \\
\sum c_{i} y_{i}+\sum d_{j} z_{j} \geq e & \mapsto & \sum c_{i} y_{i} \geq e_{1} & \mid \sum d_{j} z_{j} \geq e_{2} \\
\vdots & & & & \\
0 \geq 1 & \mapsto & 0 \geq f_{1} & 0 \geq f_{2}
\end{array}
$$

where always $e \leq e_{1}+e_{2}$; in particular $f_{1}>0$ or $f_{2}>0$.

Quadratic inequalities

It is difficult to split a quadratic inequality into two.
Eg. $y_{1} z_{1}+\cdots+y_{n} z_{n} \geq a$

Quadratic inequalities

It is difficult to split a quadratic inequality into two.
Eg. $y_{1} z_{1}+\cdots+y_{n} z_{n} \geq a$
We will write linear inequalities in the form

$$
\sum a_{i} x_{i}-b \geq 0
$$

and call $\sum a_{i} x_{i}-b$ a linear polynomial.

Lovász-Schrijver system LS

- initial inequalities are linear
- axioms

1. $0 \leq x_{i} \leq 1$
2. $x_{i}^{2}-x_{i}=0$ (integrality)

- rules:

1. positive linear combinations
2. (multiplication) if $L(\bar{x}), K(\bar{x})$ are linear polynomials, then

$$
\frac{L(\bar{x}) \geq 0 \quad K(\bar{x}) \geq 0}{L(\bar{x}) K(\bar{x}) \geq 0}
$$

Lovász-Schrijver system LS

- initial inequalities are linear
- axioms

1. $0 \leq x_{i} \leq 1$
2. $x_{i}^{2}-x_{i}=0$ (integrality)

- rules:

1. positive linear combinations
2. (multiplication) if $L(\bar{x}), K(\bar{x})$ are linear polynomials, then

$$
\frac{L(\bar{x}) \geq 0 \quad K(\bar{x}) \geq 0}{L(\bar{x}) K(\bar{x}) \geq 0}
$$

Properties:

- sound and complete [Lovász-Schrijver, 1991]
- simulates Resolution
- stronger than Resolution

example

$$
x+y-\frac{1}{2} \geq 0
$$

example

$$
\begin{aligned}
& x+y-\frac{1}{2} \geq 0 \\
& x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \quad \text { axioms }
\end{aligned}
$$

example

$$
\begin{aligned}
& x+y-\frac{1}{2} \geq 0 \\
& x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \quad \text { axioms } \\
& x y \geq 0
\end{aligned}
$$

example

$$
\begin{array}{lr}
x+y-\frac{1}{2} \geq 0 \\
x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \\
x y \geq 0 & \text { given } \\
x-x^{2}+y-x y-\frac{1}{2}+\frac{1}{2} x \geq 0 & \text { by multiplication } \\
& \text { multiplication by } 1-x
\end{array}
$$

example

$$
\begin{array}{lr}
x+y-\frac{1}{2} \geq 0 \\
x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \\
x y \geq 0 & \text { axioms } \\
x-x^{2}+y-x y-\frac{1}{2}+\frac{1}{2} x \geq 0 & \text { by multiplication } \\
\frac{1}{2} x+y-\frac{1}{2} \geq 0 & \text { multiplication by } 1-x \\
\text { using } x^{2}-x=0 \text { and } x y \geq 0
\end{array}
$$

example

$$
\begin{array}{lr}
x+y-\frac{1}{2} \geq 0 & \text { given } \\
x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \\
x y \geq 0 & \text { by multiplication } \\
x-x^{2}+y-x y-\frac{1}{2}+\frac{1}{2} x \geq 0 & \text { multiplication by } 1-x \\
\frac{1}{2} x+y-\frac{1}{2} \geq 0 & \text { using } x^{2}-x=0 \text { and } x y \geq 0 \\
\frac{1}{2} x-\frac{1}{2} x y+y-y^{2}-\frac{1}{2}+\frac{1}{2} y \geq 0 & \text { multiplication by } 1-y
\end{array}
$$

example

$$
\begin{array}{lr}
x+y-\frac{1}{2} \geq 0 & \text { given } \\
x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \\
x y \geq 0 & \text { axioms } \\
x-x^{2}+y-x y-\frac{1}{2}+\frac{1}{2} x \geq 0 & \text { by multiplication } \\
\frac{1}{2} x+y-\frac{1}{2} \geq 0 & \text { multiplication by } 1-x \\
\frac{1}{2} x-\frac{1}{2} x y+y-y^{2}-\frac{1}{2}+\frac{1}{2} y \geq 0 & \text { multiplication by } 1-y \\
\frac{1}{2} x+\frac{1}{2} y-\frac{1}{2} \geq 0 &
\end{array}
$$

example

$$
\begin{array}{lr}
x+y-\frac{1}{2} \geq 0 & \text { given } \\
x \geq 0,1-x \geq 0, y \geq 0,1-y \geq 0, x^{2}-x=0, y^{2}-y=0 \\
x y \geq 0 & \text { axioms } \\
x-x^{2}+y-x y-\frac{1}{2}+\frac{1}{2} x \geq 0 & \text { by multiplication } \\
\frac{1}{2} x+y-\frac{1}{2} \geq 0 & \text { using } x^{2}-x=0 \text { and } x y \geq 0 \\
\frac{1}{2} x-\frac{1}{2} x y+y-y^{2}-\frac{1}{2}+\frac{1}{2} y \geq 0 & \text { multiplication by } 1-y \\
\frac{1}{2} x+\frac{1}{2} y-\frac{1}{2} \geq 0 & \\
x+y-1 \geq 0 &
\end{array}
$$

Splitting an LS proof

We cannot split quadratic inequalities. Therefore we view segments between linear inequalities as single steps.

Splitting an LS proof

We cannot split quadratic inequalities. Therefore we view segments between linear inequalities as single steps.

We will gradually split the linear inequalities of a proof.

Assuming we have split the previous linear inequalities, we can express the next linear inequality as follows:

$$
\begin{gathered}
L_{1}(\bar{y})+ \\
L_{2}(\bar{z})+ \\
\sum_{i} a_{i}\left(y_{i}^{2}-y_{i}\right)+\sum_{k} L_{3, k}(\bar{y}) L_{4, k}(\bar{y})+ \\
\sum_{j} b_{j}\left(z_{i}^{2}-z_{i}\right)+\sum_{l} L_{5, l}(\bar{z}) L_{6, l}(\bar{z})+ \\
\sum_{h} L_{7, h}(\bar{y}) L_{8, h}(\bar{z}) \geq 0
\end{gathered}
$$

Assuming we have split the previous linear inequalities, we can express the next linear inequality as follows:

$$
\begin{gathered}
L_{1}(\bar{y})+ \\
L_{2}(\bar{z})+ \\
\sum_{i} a_{i}\left(y_{i}^{2}-y_{i}\right)+\sum_{k} L_{3, k}(\bar{y}) L_{4, k}(\bar{y})+ \\
\sum_{j} b_{j}\left(z_{i}^{2}-z_{i}\right)+\sum_{l} L_{5, l}(\bar{z}) L_{6, l}(\bar{z})+ \\
\sum_{h} L_{7, h}(\bar{y}) L_{8, h}(\bar{z}) \geq 0
\end{gathered}
$$

Then all 5 parts are linear and the first 4 naturally split into a y-part and a z-part.

We only need to split

$$
\sum_{h} L_{7, h}(\bar{y}) L_{8, h}(\bar{z}) \geq 0
$$

Note that after cancellations of terms it is a linear inequality that is a consequence of the inequalities $L_{7, h}(\bar{y}) \geq 0$ and $L_{8, h}(\bar{z}) \geq 0$. Hence it has form

$$
\sum_{h} \alpha_{h} L_{7, h}(\bar{y})+\sum_{h} \beta_{h} L_{8, h}(\bar{z}) \geq 0
$$

To find $\alpha_{h} \mathrm{~s}$ and $\beta_{h} \mathrm{~s}$ we use a polynomial algorithm for linear programing.

We only need to split

$$
\sum_{h} L_{7, h}(\bar{y}) L_{8, h}(\bar{z}) \geq 0
$$

Note that after cancellations of terms it is a linear inequality that is a consequence of the inequalities $L_{7, h}(\bar{y}) \geq 0$ and $L_{8, h}(\bar{z}) \geq 0$. Hence it has form

$$
\sum_{h} \alpha_{h} L_{7, h}(\bar{y})+\sum_{h} \beta_{h} L_{8, h}(\bar{z}) \geq 0
$$

To find $\alpha_{h} \mathrm{~s}$ and $\beta_{h} \mathrm{~s}$ we use a polynomial algorithm for linear programing.
In fact, we only need the constant terms of $\sum_{h} \alpha_{h} L_{7, h}(\bar{y})$ and $\sum_{h} \beta_{h} L_{8, h}(\bar{z})$,
i.e., we need to split the constant term of $\sum_{h} L_{7, h}(\bar{y}) L_{8, h}(\bar{z})$.

Semidefinite programing

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if for every vector $v \in \mathbb{R}^{n}$

$$
v^{\top} A v \geq 0
$$

Equivalently, if there are vectors v_{1}, \ldots, v_{n} such that

$$
A_{i j}=v_{i}^{\top} v_{j}
$$

Semidefinite programing

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if for every vector $v \in \mathbb{R}^{n}$

$$
v^{\top} A v \geq 0
$$

Equivalently, if there are vectors v_{1}, \ldots, v_{n} such that

$$
A_{i j}=v_{i}^{\top} v_{j}
$$

Another characterization: A quadratic form is semidefinite iff it is a sum of squares of linear forms:

$$
\sum_{i j} A_{i j} x_{i} x_{j}=\sum_{k}\left(\sum_{i} b_{i k} x_{i}\right)^{2}
$$

A semidefinite programing problem is given by a set of linear inequalities with variables $x_{i j}$ and a linear function $L\left(\ldots x_{i j} \ldots\right)$.

We want to minimize $L\left(\ldots x_{i j} \ldots\right)$ subject to the inequalities and the condition that $\left\{x_{i j}\right\}$ is a positive semidefinite matrix.

A semidefinite programing problem is given by a set of linear inequalities with variables $x_{i j}$ and a linear function $L\left(\ldots x_{i j} \ldots\right)$.

We want to minimize $L\left(\ldots x_{i j} \ldots\right)$ subject to the inequalities and the condition that $\left\{x_{i j}\right\}$ is a positive semidefinite matrix.

- SDP is solvable in polynomial time (by the ellipsoid method, or the interior point method)

A stronger Lovász-Schrijver system LS ${ }^{+}$

- add axioms of the form

$$
L(\bar{x})^{2} \geq 0
$$

for all linear polynomials L.

A stronger Lovász-Schrijver system LS ${ }^{+}$

- add axioms of the form

$$
L(\bar{x})^{2} \geq 0
$$

for all linear polynomials L.

Theorem (S. Dash 2001)
This system has feasible interpolation.

Splitting proofs in LS+ (basic idea)

Given

$$
\sum_{j} K_{j}(\bar{y}, \bar{z})^{2}
$$

we need to write it in the form

$$
\sum_{j} L_{j}(\bar{y})^{2}+\sum_{j} M_{j}(\bar{z})^{2}+\sum_{j} 2 L_{j}(\bar{y}) M_{j}(\bar{z})
$$

so that the quadratic terms of $L_{j}(\bar{y})^{2}, M_{j}(\bar{z})^{2}$ and $L_{j}(\bar{y}) M_{j}(\bar{z})$ are canceled by the terms from the multiplication rule and integrality axioms. The problem is how to split the constant terms in $K_{j}(\bar{y}, \bar{z})^{2}$.

Splitting proofs in LS ${ }^{+}$(basic idea)

Given

$$
\sum_{j} K_{j}(\bar{y}, \bar{z})^{2}
$$

we need to write it in the form

$$
\sum_{j} L_{j}(\bar{y})^{2}+\sum_{j} M_{j}(\bar{z})^{2}+\sum_{j} 2 L_{j}(\bar{y}) M_{j}(\bar{z})
$$

so that the quadratic terms of $L_{j}(\bar{y})^{2}, M_{j}(\bar{z})^{2}$ and $L_{j}(\bar{y}) M_{j}(\bar{z})$ are canceled by the terms from the multiplication rule and integrality axioms. The problem is how to split the constant terms in $K_{j}(\bar{y}, \bar{z})^{2}$.

Finding such a representation of a quadratic polynomial in y_{i} 's (resp. z_{i} 's) is equivalent to finding a representation of a positive semidefinite matrix as a sum of rank 1 positive semidefinite matrices.

Splitting proofs in LS ${ }^{+}$(basic idea)

Given

$$
\sum_{j} K_{j}(\bar{y}, \bar{z})^{2}
$$

we need to write it in the form

$$
\sum_{j} L_{j}(\bar{y})^{2}+\sum_{j} M_{j}(\bar{z})^{2}+\sum_{j} 2 L_{j}(\bar{y}) M_{j}(\bar{z})
$$

so that the quadratic terms of $L_{j}(\bar{y})^{2}, M_{j}(\bar{z})^{2}$ and $L_{j}(\bar{y}) M_{j}(\bar{z})$ are canceled by the terms from the multiplication rule and integrality axioms. The problem is how to split the constant terms in $K_{j}(\bar{y}, \bar{z})^{2}$.

Finding such a representation of a quadratic polynomial in y_{i} 's (resp. z_{i} 's) is equivalent to finding a representation of a positive semidefinite matrix as a sum of rank 1 positive semidefinite matrices.

Thus this representation can be found by semidefinite linear programing.

Recap

1. $\mathbf{C P}$ - elementary
2. LS - linear programing
3. LS $^{+}$- semidefinite linear programing

Applications

- May be easier to find an LS proof than a linear program, or semidefinite program for a given problem.
- Conditional lower bounds: if $\mathbf{P} \neq \mathbf{N P} \cap \mathbf{c o N P}$, then there are tautologies that do not have polynomial length proofs.
- Unconditional lower bounds using monotone interpolation.

Monotone interpolation and lower bounds

Theorem (Krajíček)
Given a refutation of $d:\left\{\alpha_{j}(\bar{x}, \bar{y})\right\} \cup\left\{\beta_{k}(\bar{x}, \bar{z})\right\} \vdash \perp$ where variables \bar{x} occur in $\left\{\alpha_{j}(\bar{x}, \bar{y})\right\}$ only positively, one can construct a monotone Boolean circuit that interpolates these two sets and has size linear in the size of d.

Monotone interpolation and lower bounds

Theorem (Krajíček)
Given a refutation of $d:\left\{\alpha_{j}(\bar{x}, \bar{y})\right\} \cup\left\{\beta_{k}(\bar{x}, \bar{z})\right\} \vdash \perp$ where variables \bar{x} occur in $\left\{\alpha_{j}(\bar{x}, \bar{y})\right\}$ only positively, one can construct a monotone Boolean circuit that interpolates these two sets and has size linear in the size of d.

Theorem
The same for CP proofs and monotone real-valued circuits.

Using lower bounds on monotone Boolean and real-valued circuits for certain functions, we get exponential lower bounds on the lengths of Resolution and CP proofs.

Semantic CP

Fix $k \in \mathbb{N}$. Allow positive linear combinations and any valid rule with at most k assumptions.

Semantic CP

Fix $k \in \mathbb{N}$. Allow positive linear combinations and any valid rule with at most k assumptions.

Example For $a_{i}, b \in \mathbb{N}$, allow

$$
\frac{\sum a_{i} x_{i} \geq b \quad \sum a_{i} x_{i} \leq b}{0 \geq 1}
$$

if $\sum a_{i} x_{i}=b$ has no solution. It is NP-hard to decide if it is a valid rule (knapsack!).

Semantic CP

Fix $k \in \mathbb{N}$. Allow positive linear combinations and any valid rule with at most k assumptions.

Example For $a_{i}, b \in \mathbb{N}$, allow

$$
\frac{\sum a_{i} x_{i} \geq b \quad \sum a_{i} x_{i} \leq b}{0 \geq 1}
$$

if $\sum a_{i} x_{i}=b$ has no solution. It is NP-hard to decide if it is a valid rule (knapsack!).
[Hrubes̃, 2014] An exponential lower bound based on monotone interpolation and real-valued circuits.

No lower bounds are known for LS.
[S. Dash, 2001] Exponential lower bounds on a weaker version of LS where $x_{i} x_{j}$ and $x_{j} x_{i}$ do not cancel each other and the multiplication rule has the form

$$
\frac{L(\bar{x}) \geq 0}{x L(\bar{x}) \geq 0, \quad(1-x) L(\bar{x}) \geq 0}
$$

No lower bounds are known for LS.
[S. Dash, 2001] Exponential lower bounds on a weaker version of LS where $x_{i} x_{j}$ and $x_{j} x_{i}$ do not cancel each other and the multiplication rule has the form

$$
\frac{L(\bar{x}) \geq 0}{x L(\bar{x}) \geq 0, \quad(1-x) L(\bar{x}) \geq 0}
$$

Conjecture

For proving lower bounds on LS proofs, we need lower bounds on a stronger model of monotone computations.
monotone Boolean circuits \rightarrow monotone real circuits \rightarrow ???

Monotone LP programs

P :

$$
\sum_{j} a_{i j} z_{j} \leq \sum_{k} b_{i k} x_{k}+c_{i}
$$

$a_{i j}, b_{i k}, c_{i} \in \mathbf{R}$ constants
$z_{j} \in \mathbf{R}^{+}, x_{k} \in\{0,1\}$ variables
$i=1, \ldots, l, j=1, \ldots, m, k=1, \ldots, n$.
P computes a Boolean function $f(\bar{x})$, if for every assignment \bar{a} to \bar{x}

$$
f(\bar{a})=1 \equiv P \text { has a solution }
$$

The size of P is $l+m+n$.

Monotone LP programs

$P:$

$$
\sum_{j} a_{i j} z_{j} \leq \sum_{k} b_{i k} x_{k}+c_{i}
$$

$a_{i j}, b_{i k}, c_{i} \in \mathbf{R}$ constants
$z_{j} \in \mathbf{R}^{+}, x_{k} \in\{0,1\}$ variables
$i=1, \ldots, l, j=1, \ldots, m, k=1, \ldots, n$.
P computes a Boolean function $f(\bar{x})$, if for every assignment \bar{a} to \bar{x}

$$
f(\bar{a})=1 \equiv P \text { has a solution }
$$

The size of P is $l+m+n$.

Problem

Prove lower bounds on the size of monotone LP programs computing a concrete Boolean functions.

THANK YOU

[^0]: ${ }^{1}$ Sometimes cutting planes is used as a generic name for all systems for ILP. Then one has to specify that it is Gomory-Chvátal cutting plane system:

