Participating OWL DL Reasoners

- **FaCT++** (tableau reasoner) by Dmitry Tsarkov
- **JFact** (a Java port of the FaCT++) by Dmitry Tsarkov, Ignazio Palmisano
- **HermiT** (hypertableau) by Boris Motik, Rob Shearer, Birte Glimm, Giorgos Stoiilos, Ian Horrocks
- **Konclude** (tableau, parallel) by Andreas Steigmiller, Thorsten Liebig, Birte Glimm
- **TReasoner** (tableau) by Andrey Grigoryev

Portfolio Reasoners

- **Chainsaw** (uses Atomic Decompositions) by Dmitry Tsarkov, Ignazio Palmisano
- **MORe** (uses module extraction techniques) by Ana Armas Romero, Ernesto Jimenez Ruiz, Bernardo Cuenca Grau, Ian Horrocks, Cristina Feier

Approximation-Based Reasoners

- **TrOWL** by Jeff Z. Pan, Yuan Ren, Edward Thomas, Nophadol Jekjantuk, Stuart Taylor, Jhonatan Garcia
Participating OWL EL Reasoners

- **ELepHant** by Baris Sertkaya
- **ELK (parallel)** by Yevgeny Kazakov, Markus Krötzsch, František Simančík, Pavel Klinov
- **jcel** by Julian Mendez
The Disciplines

Classification

- Classify an OWL 2 DL/EL ontology
- DL: Chainsaw, FaCT++, HermiT, JFact, Konclude, MORe, TReasoner, TrOWL
- EL: Chainsaw, ELepHant, ELK, FaCT++, HermiT, jcel, JFact, Konclude, MORe, TReasoner, TrOWL

Consistency

- Check whether an OWL 2 DL/EL ontology is consistent and has a model
- DL: Chainsaw, FaCT++, HermiT, JFact, Konclude, MORe, TReasoner
- EL: Chainsaw, ELepHant, ELK, FaCT++, HermiT, jcel, JFact, Konclude, MORe, TReasoner

Realisation (★ new in 2014 ★)

- Identify the types of all individuals in an OWL 2 DL/EL ontology
- DL: Chainsaw, FaCT++, HermiT, JFact, Konclude, TrOWL
- EL: Chainsaw, ELepHant, ELK, FaCT++, HermiT, JFact, Konclude, TrOWL
The Corpus

- 16 555 unique ontologies
- Sources:
 - MOWLCorp (Manchester OWL Corpus)
 http://mowlrepo.cs.manchester.ac.uk
 - Web Crawl,
 - Google Custom Search API
 - User Submissions
 - Oxford Ontology Library
 - BioPortal Snapshot June 2014
 - User submitted ontologies
 - BioKB (2013), DMOP, FHKB, USDA, DPC, genomic-CDS, City-Bench,...
- Get: http://zenodo.org/record/10791
The Tested Ontologies

Create a file list iterating through the bins
Skip emptied bins
Use the first X files for the competition

<table>
<thead>
<tr>
<th></th>
<th>X (OWL DL)</th>
<th>X (OWL EL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Consistency</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Realisation</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

16 555 (4 395)

2 327 (483)
What Is Measured

OWL Ontology
- non-trivial
- in profile

Reasoning Task
- realisation
- classification
- consistency checking

Reasoner

Success
- expected result
- in time

Failure
- errors
- timeouts
- unexpected result

- A result is expected if the majority of the reasoners agree on it
- In case of a draw, one result is randomly chosen and declared expected
- In time: <= 2.5 min for reasoning, <= 3 min for reasoning + parsing
The Hardware

- Cluster at the University of Manchester provided by Konstantin Korovin
- QuadCore Intel Xeon CPU@2.33GHz
- Running a rather old Fedora 12
- Java version 1.6.0_18
- One reasoner per machine
- 12GB RAM, 10GB RAM for the reasoner
Competition Results

OWL DL Consistency
1. Konclude
2. Chainsaw
3. HermiT

OWL DL Classification
1. Konclude
2. HermiT
3. MORe

OWL DL Realisation
1. Konclude
2. FaCT++
3. TrOWL
Competition Results

OWL EL Consistency
1. ELK
2. Konclude
3. MORe

OWL EL Classification
1. Konclude
2. MORe
3. ELK

OWL EL Realisation
1. Konclude
2. TrOWL
3. FaCT++
Betting Winners

- Draw a ticket
- Guess how many ontologies the drawn reasoner can classify
- Shortened coffee break ➔ less time for betting 😞
- Still 26 bets were made

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Winner</th>
<th>Reasoner</th>
<th>Max</th>
<th>Bet</th>
<th>Real</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL Classification</td>
<td>Pavel Klinov</td>
<td>HermiT</td>
<td>250</td>
<td>180</td>
<td>181</td>
<td>1</td>
</tr>
<tr>
<td>EL Classification</td>
<td>Elena Botoeva</td>
<td>ELK</td>
<td>300</td>
<td>284</td>
<td>284</td>
<td>0</td>
</tr>
</tbody>
</table>
Olympic Medal Winner

- Only three winners per competition allowed 😞
- Reasoners ranked according to Expected Results / Tasks Attempted

1. Konclude with 95.5%
2. ELK with 86.4%
3. MORe with 85.7%

Award Ceremony
Monday, July 21st
16:30-19:00
Kuppelsaal
Challenges for Next Year

• Getting OWL QL reasoners to participate
• Finding Organisers (Volunteers?)
 • Collecting Ontologies (OWL QL)
 • Collecting Queries for a Query Answering discipline
 • Working with the reasoner developers
 • Organising sponsorship
 • T-shirts & betting
• Improving the competition framework
 • Web-based reasoner submission system with automatic tests for compliance with the framework
 • Better automatic results evaluation
The Competition Organisers

ORE Competition Organisers
- Birte Glimm (University of Ulm)
- Nicolas Matentzoglu (University of Manchester)
- Bijan Parsia (University of Manchester)
- Andreas Steigmiller (University of Ulm)

Competition Infrastructure
- Konstantin Korovin (University of Manchester, Royal Society grant RG080491)

Local Organisers
- Magdalena Ortiz (Vienna University of Technology)
- Mantas Šimkus (Vienna University of Technology)

Olympic Games Chair
- Thomas Krennwallner (Vienna University of Technology)

Sponsors

![B2i Healthcare](image)
![DeepL](image)