CNF From Interpolants Via BDDs

Alexander Legg, Nina Narodytska & Leonid Ryzhyk
NICTA, University of NSW, University of Toronto
alexander.legg@nicta.com.au
Background

• Driver Synthesis
 – See CAV paper

• Strategy Extraction
 – Nina’s talk yesterday
Driver Synthesis

```c
// source code here
```
Driver Synthesis
Background
Background

- **Green arrow** → controllable move
- **Red arrow** → uncontrollable move
Background
State Partitioning
State Partitioning
Next State Operation
Next State Operation
Strategy Extraction

1) Our interpolants get reused
 - We need small interpolants
 - We need small CNF

2) Our interpolants are over small sets of variables
 - Interpolants are state sets (over state variables)
 - An efficient representation exists
CNF Via BDDs

• BDDs provide efficient representation
 – Interpolants are redundant and potentially large
 – BDDs are canonical

• CNF from BDD is simple and efficient
 – Get the shortest path to False
 – Block that path and repeat

• BDDs can explode
 – Small number of variables
Experimental Set Up

Interpolant → BDD → Cubes/CNF

(a \land b \land c)
(\neg a \land b \land d)
(b \land \neg c \land d)
Results

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolant Size</td>
<td>67.66 nodes</td>
<td>1410 nodes</td>
</tr>
<tr>
<td>Interpolant Time</td>
<td>0.24 sec</td>
<td>1.50 sec</td>
</tr>
<tr>
<td>BDD Size</td>
<td>14.8 nodes</td>
<td>58 nodes</td>
</tr>
<tr>
<td>BDD Time</td>
<td>< 0.01 sec</td>
<td>< 0.01 sec</td>
</tr>
<tr>
<td>Cube Size</td>
<td>2.05 clauses</td>
<td>12 clauses</td>
</tr>
<tr>
<td>Cube Time</td>
<td>< 0.01 sec</td>
<td>< 0.01 sec</td>
</tr>
</tbody>
</table>

Runs of EvaSolver: 36
Total Interpolants: 872
Scalability

- Time spent solving: 1297.37s
- Time spent on interpolants: 232.33s (17%)

- BDDs do not contribute significantly to time
- Interpolant size increases with state space
Related Work

- **ALLSAT**
 - Alternative to interpolation

- **Sweeping**
 - Reduces circuit
 - Doesn’t give CNF

- **Interpolants in CNF (CAV ‘13)**
 - Needs domain specific solution
Next State Operation
ALLSAT

• Existential quantification
 – Find solution (via SAT)
 – Block solution
 – Repeat
ALLSAT

• Existential quantification
 – Find solution (via SAT)
 – Block solution
 – Repeat

• Problem:

\[(x \land x') (\neg x \land \neg x')\]

After Projection: \((x') (\neg x')\)
Related Work

- **ALLSAT**
 - Alternative to interpolation

- **Sweeping**
 - Reduces circuit
 - Doesn’t give CNF

- **Interpolants in CNF (CAV ‘13)**
 - Needs domain specific solution
Experimental Set Up

- Interpolant
- BDD
- Cubes/CNF
- AIG

(a \land b \land c)
(\neg a \land b \land d)
(b \land \neg c \land d)

a = b \land c

b = \neg d \land e

c = \neg (d \land \neg e)

Results

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolant Size</td>
<td>67.66 nodes</td>
<td>1410 nodes</td>
</tr>
<tr>
<td>Interpolant Time</td>
<td>0.24 sec</td>
<td>1.50 sec</td>
</tr>
<tr>
<td>Cube Size</td>
<td>2.05 clauses</td>
<td>12 clauses</td>
</tr>
<tr>
<td>Cube Time</td>
<td>< 0.01 sec</td>
<td>< 0.01 sec</td>
</tr>
<tr>
<td>Post-sweeping Size</td>
<td>14.89 nodes</td>
<td>80 nodes</td>
</tr>
<tr>
<td>Sweeping Time</td>
<td>< 0.01 sec</td>
<td>< 0.01 sec</td>
</tr>
</tbody>
</table>

Runs of EvaSolver: 36
Total Interpolants: 872
Third Party Libraries

• PeRIplo (University of Lagano)
 – Interpolant library
 – Backed by MiniSAT
 – Performs some redundancy detection

• CUDD (CU Boulder)
 – BDD library

• IImc (CU Boulder)
 – Model checking library
 – Sweeping algorithms (BDD, SAT, Cut)
Other Talks

12:35 pm, July 21st, CAV
N. Narodytska, A. Legg, F. Bacchus, L. Ryzhyk and A. Walker
Solving Games without Controllable Predecessor

14:50 pm, July 21st, CAV
P. Cerny, T. Henzinger, A. Radhakrishna, L. Ryzhyk and T. Tarrach
Regression-free Synthesis for Concurrency

09:00 am, July 24th, SYNT
Leonid Ryzhyk
Automatic Device Driver Synthesis Project (Invited Talk, OSDI’14)
Questions