Proofs in Satisfiability Modulo Theories

Clark Barrett (NYU)
Leonardo de Moura (Microsoft Research)
Pascal Fontaine (Inria, Loria, U. Lorraine)

APPA: All about Proofs, Proofs for All
 ∀X . X Π

July 18, 2014
Outline

1. An overview of SMT solving
2. Proofs and SMT
3. Examples of SMT proofs
4. Applications and Challenges
Motivation

Automatic analysis of computer hardware and software requires engines capable of reasoning efficiently about large and complex systems.

Boolean engines such as *Binary Decision Diagrams* and *SAT solvers* are typical engines of choice for today’s industrial verification applications.

However, systems are usually designed and modeled at a higher level than the Boolean level and the translation to Boolean logic can be expensive.

A primary goal of research in *Satisfiability Modulo Theories* (SMT) is to create verification engines that can reason natively at a higher level of abstraction, while still retaining the speed and automation of today’s Boolean engines.
Is the following formula satisfiable?

\[\text{read}(\text{write}(a, i, v), i) \neq v \]
Is the following formula satisfiable?

\[\text{read}(\text{write}(a, i, v), i) \neq v \]

- If the set of allowable models is unrestricted, then the answer is yes.
Is the following formula satisfiable?

\(\text{read}(\text{write}(a, i, v), i) \neq v \)

- If the set of allowable models is unrestricted, then the answer is yes.
- However, if we only consider models that obey the axioms for \textit{read} and \textit{write} then the answer is no.
T-satisfiability

For a theory T, the T-satisfiability problem consists of deciding whether there exists a model A and variable assignment α such that $(A, \alpha) \models T \cup \varphi$ for a given formula φ.

SAT and Theories

- An SMT solver uses a fast SAT solver for Boolean reasoning
- Coupled with specialized theory solvers for theory reasoning
What is SMT good for?

Generic Reasoning

- Given some conditions X, is it possible for Y to happen, and if so how?
- X and Y must be expressible in logic
- SMT offers a lot of expressive power
- Possibility to define a new theory if all else fails

What SMT is NOT good for

- Reasoning in the presence of uncertainty (e.g. probabilities)
- Heavy use of quantifiers
- Difficult constraints with no Boolean structure (e.g. Linear Programs)
First Attempts

- Cooperating Validity Checker (CVC), 2002\(^a\)
 - First SMT solver to attempt proof-production
 - Wanted to be able to independently certify results
 - Aid in finding and correcting correctness bugs
 - Surprisingly - most important contribution was use in producing explanations of inconsistency

\(^a\)Stump, Barrett, Dill. **CVC: A Cooperating Validity Checker**, CAV ’02.
Communication with skeptical proof assistants

- **CVC Lite, 2005**
 - Successor to CVC, ad hoc proof format
 - Translator from proof format to HOL Light
 - Provide access to efficient decision procedures within HOL Light
 - And enable use of HOL Light as a proof-checker for CVC Lite

- **haRVey, 2006**
 - Integration with Isabelle/HOL

- **CVC3, 2008**
 - Effort to certify SMT-LIB benchmark library
 - Found benchmarks with incorrect status
 - Found bug in CVC3

Notes:

- McLaughlin, Barrett, Ge. *Cooperating Theorem Provers: A Case Study Combining HOL-Light and CVC Lite*, PDPAR ’05.
- Fontaine, Marion, Merz, Nieto, Tiu. *Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof Assistants*, TACAS ’06.
Additinal solvers support proofs

- Fx7, 2008a
 - Quantified reasoning, custom proof-checker
- MathSAT4, 2008b
 - Internal proof engine for unsat cores and interpolants
- Z3, 2008c
 - Proof traces - single rule for theory lemmas
- veriT, 2009d
 - Proof production a primary goal in veriT

aMoskal. \textit{Rocket-Fast Proof Checking for SMT Solvers}, TACAS ’08.
bBruttomesso, Cimatti, Franzén, Griggio, Sebastiani. \textit{The MathSAT 4 SMT Solver}, CAV ’08.
cde Moura, Bjørner. \textit{Proofs and Refutations, and Z3}, LPAR ’08.
dBouton, de Oliveira, Déharbe, Fontaine. \textit{veriT: An Open, Trustable and Efficient SMT-Solver}, CADE ’09.
Current Status

- No agreed-upon format for proofs in SMT
- Solvers targeting self-contained, independently-checkable proofs
 - CVC4, veriT
- Proof traces
 - Z3
- Solvers using proof technology to drive other features (e.g. interpolants)
 - MathSAT, SMTInterpol
Satisfiability Modulo Theories \(\approx\) SAT + expressiveness

Satisfiability of first-order formulas with interpreted and non-interpreted predicates and functions

Interpreted: Axioms (e.g. arrays) or Structure (e.g. linear arithmetic)

- SAT solvers

\[\neg\left[(p \implies q) \implies [(\neg p \implies q) \implies q] \right] \]

- congruence closure (uninterpreted symbols + equality)

\[a = b \land \left[f(a) \neq f(b) \lor (p(a) \land \neg p(b)) \right] \]

- in combination with arithmetic

\[a \leq b \land b \leq a + x \land x = 0 \land \left[f(a) \neq f(b) \lor (p(a) \land \neg p(b + x)) \right] \]

- quantifiers

\[\ldots\]

Alt-Ergo, Barcelogic, CVC4, MathSAT, OpenSMT, SMTInterpol, veriT, Yices, z3 \ldots
An overview of SMT solving

Standard input language: SMT-LIB 2.0

\[a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \]

In SMT-LIB 2.0 format:

```
(set-logic QF_UFLRA)
(set-info :source | Example formula in SMT-LIB 2.0 |)
(set-info :smt-lib-version 2.0)
(declare-fun f (Real) Real)
(declare-fun q (Real) Bool)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun x () Real)
(assert (and (\leq a b) (\leq b (+ a x)) (= x 0)
          (or (not (= (f a) (f b)))
              (and (q a) (not (q (+ b x)))))))
(check-sat)
(exit)
```
An overview of SMT solving

From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)
Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

To SAT solver: \(p_{a \leq b} \land p_{b \leq a + x} \land p_{x = 0} \land [\neg p_{f(a) = f(b)} \lor (p_{q(a)} \land \neg p_{q(b + x)})] \)
Input: \(a \leq b \land b \leq a + x \land x = 0 \land \left[f(a) \neq f(b) \lor (q(a) \land \neg q(b + x)) \right] \)

To SAT solver: \(p_{a\leq b} \land p_{b\leq a+x} \land p_{x=0} \land \left[\neg p_f(a) = f(b) \lor (p_q(a) \land \neg p_q(b+x)) \right] \)

Boolean model: \(p_{a\leq b}, p_{b\leq a+x}, p_{x=0}, \neg p_f(a) = f(b) \)
Input: \(a \leq b \land b \leq a + x \land x = 0 \land \left[f(a) \neq f(b) \lor (q(a) \land \neg q(b + x)) \right] \)

To SAT solver: \(p_{a \leq b} \land p_{b \leq a + x} \land p_{x = 0} \land \left[\neg p_{f(a) = f(b)} \lor (p_{q(a)} \land \neg p_{q(b + x)}) \right] \)

Boolean model: \(p_{a \leq b}, p_{b \leq a + x}, p_{x = 0}, \neg p_{f(a) = f(b)} \)

Theory reasoner: \(a \leq b, b \leq a + x, x = 0, f(a) \neq f(b) \) unsatisfiable
From propositional SAT to SMT

Input: \[a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \]

To SAT solver: \[p_{a \leq b} \land p_{b \leq a + x} \land p_{x=0} \land [\neg p_{f(a)=f(b)} \lor (p_{q(a)} \land \neg p_{q(b+x)})] \]

Boolean model: \[p_{a \leq b}, p_{b \leq a + x}, p_{x=0}, \neg p_{f(a)=f(b)} \]

Theory reasoner: \(a \leq b, b \leq a + x, x = 0, f(a) \neq f(b) \) unsatisfiable

New clause: \[\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{x=0} \lor p_{f(a)=f(b)} \]
Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

To SAT solver: \(p_a \leq b \land p_b \leq a + x \land p_x = 0 \land [\neg p_{f(a)} = f(b) \lor (p_{q(a)} \land \neg p_{q(b+x)})] \)

Boolean model: \(p_a \leq b, p_b \leq a + x, p_x = 0, \neg p_{f(a)} = f(b) \)

Theory reasoner: \(a \leq b, b \leq a + x, x = 0, f(a) \neq f(b) \) unsatisfiable

New clause: \(\neg p_a \leq b \lor \neg p_b \leq a + x \lor \neg p_x = 0 \lor p_{f(a)} = f(b) \)
Input: $a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))]$

To SAT solver: $p_{a \leq b} \land p_{b \leq a + x} \land p_{x=0} \land [\neg p_{f(a) = f(b)} \lor (p_{q(a)} \land \neg p_{q(b+x)})]$

Boolean model: $p_{a \leq b}, p_{b \leq a + x}, p_{x=0}, p_{f(a) = f(b)}$

Theory reasoner: $a \leq b, b \leq a + x, x = 0, f(a) \neq f(b)$ unsatisfiable

New clause: $\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{x=0} \lor p_{f(a) = f(b)}$
An overview of SMT solving

From propositional SAT to SMT

Input:
\[a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \]

To SAT solver:
\[p_{a \leq b} \land p_{b \leq a + x} \land p_{x = 0} \land [\neg p f(a) = f(b) \lor (p q(a) \land \neg p q(b + x))] \]

Boolean model:
\[p_{a \leq b}, p_{b \leq a + x}, p_{x = 0}, \neg p f(a) = f(b) \]

Theory reasoner:
\[a \leq b, b \leq a + x, x = 0, f(a) \neq f(b) \text{ unsatisfiable} \]

New clause:
\[\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{x = 0} \lor p f(a) = f(b) \]
An overview of SMT solving

From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

To SAT solver: \(p_{a \leq b} \land p_{b \leq a + x} \land p_{x=0} \land [\neg p_{f(a)=f(b)} \lor (p_{q(a)} \land \neg p_{q(b+x)})] \)

Boolean model: \(p_{a \leq b}, p_{b \leq a + x}, p_{x=0}, \neg p_{f(a)=f(b)} \)

Theory reasoner: \(a \leq b, b \leq a + x, x = 0, f(a) \neq f(b) \) unsatisfiable

New clause: \(\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{x=0} \lor p_{f(a)=f(b)} \)
online decision procedures
 theory checks propositional assignment on the fly
small explanations
 unsat core of propositional assignment
 discard classes of propositional assignments (not one by one)
theory propagation
 instead of guessing propositional variable assignments, SAT solver assigns theory-entailed literals
ackermannization, simplifications, and other magic
theory reasoning techniques specific to theories...

... but (mostly) interact similarly with the SAT solver

uninterpreted symbols and equality: congruence closure

linear arithmetic: mostly simplex

quantifiers: mostly instantiation

More details to come later (with proof production)
Outline

1. An overview of SMT solving
2. Proofs and SMT
3. Examples of SMT proofs
4. Applications and Challenges
Proofs and SMT

From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

SMT proof: interleaving of SAT proof and theory reasoning proof
Proofs and SMT

From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

To SAT solver: \(p_a \leq b \land p_b \leq a + x \land p_x = 0 \land [\neg p_f(a) = f(b) \lor (p_q(a) \land \neg p_q(b + x))] \)

SMT proof: interleaving of SAT proof and theory reasoning proof
From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))]\)

To SAT solver: \(p_a \leq b \land p_b \leq a + x \land p_x = 0 \land [\neg p_f(a) = f(b) \lor (p_q(a) \land \neg p_q(b + x))]\)

New theory clause: \(\neg p_a \leq b \lor \neg p_b \leq a + x \lor \neg p_x = 0 \lor p_f(a) = f(b)\)

SMT proof: interleaving of SAT proof and theory reasoning proof
Proofs and SMT

From propositional SAT to SMT

Input: \(a \leq b \land b \leq a + x \land x = 0 \land [f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))] \)

To SAT solver: \(p_{a \leq b} \land p_{b \leq a + x} \land p_{x = 0} \land [\neg p_{f(a) = f(b)} \lor (p_{q(a)} \land \neg p_{q(b + x)})] \)

New theory clause: \(\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{x = 0} \lor p_{f(a) = f(b)} \)

New theory clause: \(\neg p_{a \leq b} \lor \neg p_{b \leq a + x} \lor \neg p_{q(a)} \lor p_{q(b + x)} \)

SMT proof: interleaving of SAT proof and theory reasoning proof
SMT in practice

- online decision procedures
 - theory checks propositional assignment on the fly
 - *No influence on proof*

- small explanations
 - unsat core of propositional assignment
 - discard classes of propositional assignments (not one by one)
 - *No influence on proof (small theory clauses)*

- theory propagation
 - instead of guessing propositional variable assignments, SAT solver assigns theory-entailed literals
 - *May need explanation (theory clause)*

- ackermannization, simplifications, and other magic
 - *Sometimes cumbersome to prove*

Challenge: collect enough information
Theory reasoning proofs
Congruence closure

Consider the terms: \(a, b, c, f(a), f(b) \)
Theory reasoning proofs

Congruence closure

Consider the terms: \(a, b, c, f(a), f(b) \)

\[
\begin{array}{cc}
 f(a) & f(b) \\
 a & c & b
\end{array}
\]

Each term in its equivalence class
Consider the terms: \(a, b, c, f(a), f(b) \)

And literals: \(a = c \)

\[
\begin{align*}
& f(a) & f(b) \\
\end{align*}
\]

- each term in its equivalence class
- equality \(\rightarrow \) class merge

\[
\begin{align*}
& a & a = c & c & b \\
\end{align*}
\]
Theory reasoning proofs
Congruence closure

Consider the terms: \(a, b, c, f(a), f(b) \)
And literals: \(a = c, c = b \)

\[
\begin{align*}
f(a) & \quad f(b) \\
\end{align*}
\]

- each term in its equivalence class
- equality \(\rightarrow \) class merge

\[
\begin{align*}
a & \quad a = c \\
c & \quad c = b \\
b &
\end{align*}
\]
Theory reasoning proofs

Congruence closure

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a = c, c = b$

- each term in its equivalence class
- equality \rightarrow class merge
- congruence \rightarrow class merge

Resolution compute the theory clause:

$$a \neq c \lor c \neq b \lor f(a) = f(b)$$
Theory reasoning proofs
Congruence closure

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a = c, c = b, f(a) \neq f(b)$

- each term in its equivalence class
- equality \rightarrow class merge
- congruence \rightarrow class merge
- detect conflicts
Theory reasoning proofs
Congruence closure

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a = c, c = b, f(a) \neq f(b)$

- each term in its equivalence class
- equality \rightarrow class merge
- congruence \rightarrow class merge
- detect conflicts

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proofs

Congruence closure

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a = c, c = b, f(a) \neq f(b)$

Each term in its equivalence class
Equality \rightarrow class merge
Congruence \rightarrow class merge
Detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:
Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$

And literals: $a = c, c = b, f(a) \neq f(b)$

- each term in its equivalence class
- equality \rightarrow class merge
- congruence \rightarrow class merge
- detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

- conflict $f(a) \neq f(b)$ with an implied literal
Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: \(a, b, c, f(a), f(b) \)
And literals: \(a = c, c = b, f(a) \neq f(b) \)

\[
f(a) \neq f(b)
\]

- each term in its equivalence class
- equality \(\rightarrow \) class merge
- congruence \(\rightarrow \) class merge
- detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:
- conflict \(f(a) \neq f(b) \) with an implied literal
- entailed by congruence: \(a \neq b \lor f(a) = f(b) \)
Theory reasoning proofs
Congruence closure

Consider the terms: \(a, b, c, f(a), f(b) \)
And literals: \(a = c, c = b, f(a) \neq f(b) \)

\[
\begin{align*}
 f(a) & \neq f(b) \\
 a & = c \\
 c & = b \\
 b
\end{align*}
\]

- each term in its equivalence class
- equality \(\rightarrow \) class merge
- congruence \(\rightarrow \) class merge
- detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

- conflict \(f(a) \neq f(b) \) with an implied literal
- entailed by congruence: \(a \neq b \lor f(a) = f(b) \)
- and \(a = b \) comes from transitivity: \(a \neq c \lor c \neq b \lor a = b \)
Consider the terms: \(a, b, c, f(a), f(b) \)
And literals: \(a = c, c = b, f(a) \neq f(b) \)

\[
\begin{align*}
 f(a) & \neq f(b) \\
 a = c & \quad c = b
\end{align*}
\]

- each term in its equivalence class
- equality \(\rightarrow \) class merge
- congruence \(\rightarrow \) class merge
- detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:
- conflict \(f(a) \neq f(b) \) with an implied literal
- entailed by congruence: \(a \neq b \lor f(a) = f(b) \)
- and \(a = b \) comes from transitivity: \(a \neq c \lor c \neq b \lor a = b \)
- resolution compute the theory clause: \(a \neq c \lor c \neq b \lor f(a) = f(b) \)
Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
Theory reasoning proofs

Combination of theories

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \lor f(a) = f(b)$
Theory reasoning proof, with combination of theories:

- conflict \(f(a) \neq f(b) \) with an implied literal
- entailed by congruence: \(a \neq b \lor f(a) = f(b) \)
- and \(a = b \) comes from another theory clause:
 \[\neg a \leq b \lor \neg b \leq a + x \lor x \neq 0 \lor a = b \]
Theory reasoning proofs

Combination of theories

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \lor f(a) = f(b)$
- and $a = b$ comes from another theory clause:
 $\neg a \leq b \lor \neg b \leq a + x \lor x \neq 0 \lor a = b$
- resolution compute the theory clause:
 $\neg a \leq b \lor \neg b \leq a + x \lor x \neq 0 \lor f(a) = f(b)$
Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \lor f(a) = f(b)$
- and $a = b$ comes from another theory clause:
 $\neg a \leq b \lor \neg b \leq a + x \lor x \neq 0 \lor a = b$
- *resolution* compute the theory clause:
 $\neg a \leq b \lor \neg b \leq a + x \lor x \neq 0 \lor f(a) = f(b)$

Over-simplification:

- delayed theory combination
- model-based combination
Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate
Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\[y > 1 \]

\[x < 1 \]
\[y \leq x \]
\[x < 1 + y \leq x - y > 1 \]
\[0 < 0 \]

Clause:
\[\neg y > 1 \lor \neg x < 1 \lor \neg y \leq x \]

And also:
integers: branches, cuts
simplifications, bound propagations...
Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\[y > 1, \ x < 1 \]
Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\(y > 1, \ x < 1, \ y \leq x \)

Clause:
\(\neg y > 1 \lor \neg x < 1 \lor \neg y \leq x \)
Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\[y > 1, \quad x < 1, \quad y \leq x \]

inconsistency
Proofs and SMT

Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\[y > 1, \ x < 1, \ y \leq x \]

\[\text{inconsistency} \]

\[
\begin{align*}
x &< 1 \\
+ \quad y &\leq x \\
- \quad y &> 1 \\
\hline
0 &< 0
\end{align*}
\]
Proofs and SMT

Theory reasoning proofs
Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

- $y > 1$, $x < 1$, $y \leq x$
- Inconsistency

\[
\begin{align*}
 x &< 1 \\
 + &y \leq x \\
 - &y > 1 \\
 \hline
 0 &< 0
\end{align*}
\]

- Clause: $\neg y > 1 \lor \neg x < 1 \lor \neg y \leq x$
Proofs and SMT

Theory reasoning proofs

Linear arithmetic

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

\[y > 1, \quad x < 1, \quad y \leq x \]

inconsistency

\[
\begin{align*}
x &< 1 \\
y &\leq x \\
y &> 1
\end{align*}
\]

\[
\begin{align*}
0 &< 0
\end{align*}
\]

Clause: \(\neg y > 1 \lor \neg x < 1 \lor \neg y \leq x \)

And also

- integers: branches, cuts
- simplifications, bound propagations...
Quantifiers and proofs

- Quantifiers mainly come from instantiation
- Proof is simply
 \[\neg \forall x \varphi(x) \lor \varphi(t) \]
- \(\forall x \varphi(x) \) is an abstract Boolean variable for the SAT solver
- Resolution, again
- Skolemization is a problem though
Other theories

- arrays
- inductive data types
- bit-vectors
- strings
- non-linear arithmetic
Outline

1. An overview of SMT solving

2. Proofs and SMT

3. Examples of SMT proofs

4. Applications and Challenges
Examples of SMT proofs

CVC4 proof (1/3)

(check
 (% a var_real
 (% b var_real
 (% x var_real
 (% f (term (arrow Real Real))
 (% q (term (arrow Real Bool))
 (% @F1 (th_holds (<=_Real (a_var_real a) (a_var_real b)))
 (% @F2 (th_holds (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))))
 (% @F3 (th_holds (= Real (a_var_real x) (a_real 0/1)))
 (% @F4 (th_holds (or (not (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))))
 (and (= Bool (apply _ _ q (a_var_real a)) btrue)
 (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))))
 (: (holds cln)
 (decl_atom (<=_Real (a_var_real a) (a_var_real b)) (\ v1 (\ a1
 (decl_atom (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))) (\ v2 (\ a2
 (decl_atom (= Real (a_var_real x) (a_real 0/1)) (\ v3 (\ a3
 (decl_atom (= Real (a_var_real a) (a_var_real b)) (\ v4 (\ a4
 (decl_atom (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))) (\ v5 (\ a5
 (decl_atom (= Bool (apply _ _ q (a_var_real a)) btrue)) (\ v6 (\ a6
 (decl_atom (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse) (\ v7 (\ a7
 (decl_atom (<=_Real (a_var_real b) (a_var_real a)) (\ v8 (\ a8
 (decl_atom (= Real (a_var_real a) (+_Real (a_var_real b) (a_var_real x))) (\ v9 (\ a9
 (decl_atom (and (= Bool (apply _ _ q (a_var_real a)) btrue)
 (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))
 (\ v10 (\ a10

July 18, 2014 25 / 41
Examples of SMT proofs

CVC4 proof (2/3)

; CNFication
(satlem _ _ (asf _ _ _ a1 (\ 11 (clausify_false (contra _ @F1 11)))) (\ C1
(satlem _ _ (asf _ _ _ a2 (\ 12 (clausify_false (contra _ @F2 12)))) (\ C2
(satlem _ _ (asf _ _ _ a3 (\ 13 (clausify_false (contra _ @F3 13)))) (\ C3
(satlem _ _ (ast _ _ _ a5 (\ 15 (asf _ _ _ a6 (\ 16 (clausify_false (contra _
 (and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ l1)) @F4)))) (\ C4
(satlem _ _ (ast _ _ _ a5 (\ 15 (asf _ _ _ a7 (\ 17 (clausify_false (contra _
 (and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ 15) @F4)))) (\ C5

; Theory lemmas
; \a4 \ a1 \ a8 \ false
(satlem _ _ (asf _ _ _ a4 (\ 14 (ast _ _ _ a1 (\ 11 (ast _ _ _ a8 (\ 18
 (clausify_false (contra _ 11
 (or_elim_1 _ _ (not_not_intro _ (<=_to_>=_Real _ _ 18)) (not_=to_>==<Real _ _ 14))))))))))
) (\ C6
; \a2 \ a3 \ \a8 \ false
(satlem _ _ (ast _ _ _ a2 (\ 12 (ast _ _ _ a3 (\ 13 (asf _ _ _ a8 (\ 18 (clausify_false
 (poly_norm_= _ _ (<=_to_>=_Real _ _ 12) (pn_= _ _ _ _ _ _ _ _ _ _ _ _ _ _
 (pn_var a) (pn_var x)) (\ pn2
 (poly_norm_= _ _ _ (symm _ _ _ _ 13) (pn_= _ _ _ _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
 (poly_norm_= _ _ _ (not_=to_>=_Real _ _ 18) (pn_= _
Examples of SMT proofs

CVC4 proof (3/3)

; a3 ^ a4 ^ ~a9 => false
(satlem _ _ (ast _ _ _ a3 (\ 13 (ast _ _ _ a4 (\ 14 (asf _ _ _ a9 (\ 19 (clausify_false
(poly_norm_= _ _ _ (symm _ _ _ 13) (pn-_ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
(poly_norm_= _ _ _ 14 (pn-_ _ _ _ _ (pn_var a) (pn_var b)) (\ pn4
(poly_norm_distinct _ _ _ 19 (pn-_ _ _ _ _ (pn+_ _ _ _ _
(pn_var b) (pn_var x)) (pn_var a)) (\ pn9
(lra_contra_distinct _ (lra_add_=_distinct _ _
(lra_add_== _ _ _ pn3 pn4 pn9)))))))))))) (\ C9
; a9 ^ a6 ^ a7 => false
(satlem _ _ (ast _ _ _ a9 (\ 19 (ast _ _ _ a6 (\ 16 (ast _ _ _ a7 (\ 17 (clausify_false
(contra _ (trans _ _ _ _ _ (trans _ _ _ _ (symm _ _ _ 16) (cong _ _ _ _ _ _
(refl _ q) 19)) 17) b_true_not_false))))))))) (\ C10
; Resolution proof
(satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ C6 C1 v1) (Q _ _ (Q _ _ C7 C2 v2) C3 v3) v8)
(Q _ _ (Q _ _ (Q _ _ (R _ _ C9 C10 v9) C3 v3) C4 v6) C5 v7) C8 v5) v4)
(\ x x))}))}
Examples of SMT proofs

veriT proof (1/2)

(set .c1 (input :conclusion ((and (<= a b) (<= b (+ a x)) (= x 0)
 (or (not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))))

(set .c2 (and :clauses (.c1) :conclusion (<= a b)))

(set .c3 (and :clauses (.c1) :conclusion (<= b (+ a x))))

(set .c4 (and :clauses (.c1) :conclusion (= x 0)))

(set .c5 (and :clauses (.c1) :conclusion
 ((or (not (= (f b) (f a))) (and (q a) (not (q (+ b x))))))))

(set .c6 (and_pos :conclusion ((not (and (q a) (not (q (+ b x)))))) (q a)))

(set .c7 (and_pos :conclusion ((not (and (q a) (not (q (+ b x)))))) (not (q (+ b x))))))

(set .c8 (or :clauses (.c5) :conclusion
 ((not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))

(set .c9 (eq_congruent :conclusion ((not (= a b))) (= (f b) (f a))))

(set .c10 (la_disequality :conclusion ((or (= a b) (not (<= a b)) (not (<= b a)))))

(set .c11 (or :clauses (.c10) :conclusion ((= a b) (not (<= a b)) (not (<= b a)))))

(set .c12 (resolution :clauses (.c11 .c2) :conclusion ((= a b) (not (<= b a)))))

(set .c13 (la_generic :conclusion ((not (<= b (+ a x))) (<= b a) (not (= x 0))))))

(set .c14 (resolution :clauses (.c13 .c3 .c4) :conclusion (<= b a)))

(set .c15 (resolution :clauses (.c12 .c14) :conclusion (= a b)))

(set .c16 (resolution :clauses (.c9 .c15) :conclusion ((= (f b) (f a))))

(set .c17 (resolution :clauses (.c8 .c16) :conclusion ((and (q a) (not (q (+ b x)))))))

(set .c18 (resolution :clauses (.c6 .c17) :conclusion ((q a))))

(set .c19 (resolution :clauses (.c7 .c17) :conclusion ((not (q (+ b x))))))
Examples of SMT proofs

veriT proof (2/2)

(set .c20 (eq_congruent_pred :conclusion ((not (= a (+ b x))) (not (q a)) (q (+ b x)))))
(set .c21 (resolution :clauses (.c20 .c18 .c19) :conclusion ((not (= a (+ b x))))))
(set .c22 (la_disequality :conclusion
 ((or (= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c23 (or :clauses (.c22) :conclusion
 ((= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c24 (resolution :clauses (.c23 .c21) :conclusion
 ((not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c25 (eq_congruent_pred :conclusion
 ((not (= a b)) (not (= (+ a x) (+ b x))) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c26 (eq_congruent :conclusion ((not (= a b)) (not (= x x)) (= (+ a x) (+ b x))))))
(set .c27 (eq_reflexive :conclusion ((= x x))))
(set .c28 (resolution :clauses (.c26 .c27) :conclusion ((not (= a b)) (= (+ a x) (+ b x))))))
(set .c29 (resolution :clauses (.c25 .c28) :conclusion
 ((not (= a b)) (<= a (+ b x)) (not (<= b (+ a x)))))
(set .c30 (resolution :clauses (.c29 .c3 .c15) :conclusion (<= a (+ b x))))))
(set .c31 (resolution :clauses (.c24 .c30) :conclusion ((not (<= (+ b x) a))))))
(set .c32 (la_generic :conclusion (<= (+ b x) a) (not (= a b)) (not (= x 0))))))
(set .c33 (resolution :clauses (.c32 .c4 .c15 .c31) :conclusion ()})

July 18, 2014 29 / 41
Examples of SMT proofs

z3 proof (1/2)

(let (($x82 (q b)) (?x49 (* (- 1.0) b)) (?x50 (+ a ?x49)))
 ($x51 (<= ?x50 0.0)) (?x35 (f b)) (?x34 (f a))
 ($x36 (= ?x34 ?x35)) ($x37 (not $x36))
 ($x43 (or $x37 (and (q a) (not (q (+ b x))))))
 ($x33 (= x 0.0)) (?x57 (+ a ?x49 x)) ($x56 (>= ?x57 0.0))
 ($x44 (and (<= a b) (<= b (+ a x)) $x33 $x43))
 (@x60 (monotonicity (rewrite (= (<= a b) $x51)))
 (rewrite (= (<= b (+ a x)) $x56))
 (= $x44 (and $x51 $x56 $x33 $x43))))
 (@x61 (mp (asserted $x44) @x60 (and $x51 $x56 $x33 $x43)))
 (@x62 (and-elim @x61 $x51)) ($x71 (>= ?x50 0.0)))
(let ((@x70 (trans (monotonicity (and-elim @x61 $x33) (= ?x57 (+ a ?x49 0.0))))
 (rewrite (= (+ a ?x49 0.0) ?x50)) (= ?x57 ?x50)))
(let ((@x74 (mp (and-elim @x61 $x56) (monotonicity @x70 (= $x56 $x71)) $x71)))
(let ((@x121 (monotonicity (symm (_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))
 (= $x82 (q a))))
(let ((@$x38 (q a)) ($x96 (or (not $x38) $x82)) ($x97 (not $x96)))
(let ((@x115 (monotonicity (symm (_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))
 (= ?x35 ?x34)))
(let ((@x100 (or $x37 $x97)))
(let ((@x102 (monotonicity (rewrite (= (and $x38 (not $x82)) $x97))
 (= (or $x37 (and $x38 (not $x82))) $x100)))))
(let ((@x85 (not $x82)))
(let ((@x88 (and $x38 $x85)))
(let ((@x91 (or $x37 $x88)))
(let ((@x81 (trans (monotonicity (and-elim @x61 $x33) (= (+ b x) (+ b 0.0))))
 (rewrite (= (+ b 0.0) b)) (= (+ b x) b)))
(let ((@x87 (monotonicity (monotonicity @x81 (= (q (+ b x)) $x82)) (= (not (q (+ b x))) $x85)))))
Examples of SMT proofs

z3 proof (2/2)

(let ((@x93 (monotonicity (monotonicity @x87 (= (and $x38 (not (q (+ b x)))) $x88))
 (= $x43 $x91))))
(let ((@x103 (mp (mp (and-elim @x61 $x43) @x93 $x91) @x102 $x100)))
(let ((@x119 (unit-resolution (def-axiom (or $x96 $x38))
 (unit-resolution @x103 (symm @x115 $x36) $x97) $x38)))
(let ((@x118 (unit-resolution (def-axiom (or $x96 $x85))
 (unit-resolution @x103 (symm @x115 $x36) $x97) $x85)))
(unit-resolution @x118 (mp @x119 (symm @x121 (= $x38 $x82)) $x82) false)))))))))))

July 18, 2014 31 / 41
Outline

1. An overview of SMT solving
2. Proofs and SMT
3. Examples of SMT proofs
4. Applications and Challenges
Applications and Challenges

Applications

Current Applications

- Proof reconstruction within skeptical proof assistants a, b, c
- Interpolant generation d, e, f
- Unsat core computation g

b Armand, Faure, Grégoire, Keller, Thery, Werner. *A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses*, CPP ’11.

c Böhme. *Proof Reconstruction for Z3 in Isabelle/HOL*, SMT’09.

f McMillan. *Interpolants from Z3 Proofs*, FMCAD ’11.

g Déharbe, Fontaine, Guyot, Voisin. *SMT Solvers for Rodin*, Abstract State Machines ’12.
Challenges

- Challenge to collect and store proof information efficiently
- Producing proofs for sophisticated preprocessing techniques
- Producing proofs for modules that use external tools
- Standardizing a proof format
Lean Theorem Prover

- New theorem prover started by L. de Moura and Soonho Kong.
- Contributors: Jeremy Avigad, Cody Roux, Floris van Doorn, Parikshit Khanna
- Many thanks to: Georges Gonthier, Nikhil Swamy, Vladimir Voevodsky

- Open source (Apache 2.0),
 https://github.com/leanprover/lean

- can be used as an automatic prover (SMT), and as a proof assistant

- Based on Type Theory, and incorporates ideas of many other systems:
 Agda, Coq, HOL-Light, Isabelle, PVS, ...
Applications and Challenges

Lean: Two Layers Architecture

- **First layer**: type checker, APIs for creating terms, environment, ...
- Configuration options: e.g., impredicative Prop, proof irrelevance, ...
- Universe polymorphism.
- 5k lines of C++ code.

- **Second layer**: additional (trusted) components.
- Example: inductive datatypes (extra 500 lines of code).
- We currently support two flavors/instances: **Standard** and **HoTT**.

July 18, 2014 36 / 41
Lean: As a Library

- Meant to be used as a **standalone system** and as a **software library**.
- Extensive API and can be easily embedded in other systems.
- SMT solvers can use the Lean API to create proof terms that can be independently checked.
- APIs in C++, Lua (and Python coming soon).
More expressive language for encoding proofs provides several advantages.

We can easily add new "proof rules" without modifying the proof checker (i.e., type checker).

Proof rules such as mp and monotonicity used in Z3 are just theorems in Lean.
First, define theory, then prove theorems/properties, then implement automation.

Example: suppose we are implementing a procedure for Presburger Arithmetic.

```lean
theorem add_comm (n m : nat) : n + m = m + n := induction_on m (trans (add_zero_right _) (symm (add_zero_left _))) (take k IH, calc n + succ k = succ (n+k) : add_succ_right _ _ 
... = succ (k + n) : {IH} 
... = succ k + n : symm (add_succ_left _ _))```
Pre-processing steps such as Skolemization can be supported in a similar way.

```
theorem skolem_th {A : Type} {B : A → Type} {P : ∀ x : A, B x → Bool} :
 (∀ x, ∃ y, P x y) = (∃ f, (∀ x, P x (f x)))
:= iff_intro
 (assume H : (∀ x, ∃ y, P x y), axiom_of_choice H)
 (assume H : (∃ f, (∀ x, P x (f x))),
 take x, obtain (fw : ∀ x, B x) (Hw : ∀ x, P x (fw x)), from H,
 exists_intro (fw x) (Hw x))
```
The pre-processing “issue” is addressed by providing a **generic rewriting engine** that can use any previously proved theorems.

The engine accepts two kinds of theorems: **congruence theorems** and **(conditional) equations**.

It also supports a \(\lambda\)-Prolog like engine.

```lean
theorem forall_or_distributel {A : Type} (p : Bool) (q : A \rightarrow Bool) : (\forall x, q x \lor p) = ((\forall x, q x) \lor p)
theorem forall_or_distributer {A : Type} (p : Bool) (q : A \rightarrow Bool) : (\forall x, p \lor q x) = (p \lor (\forall x, q x))
```