Proofs in Satisfiability Modulo Theories

Clark Barrett (NYU)
Leonardo de Moura (Microsoft Research)
Pascal Fontaine (Inria, Loria, U. Lorraine)
APPA: All about Proofs, Proofs for All
$\forall X . X \Pi$
July 18, 2014

Outline

(1) An overview of SMT solving
(2) Proofs and SMT
(3) Examples of SMT proofs
4. Applications and Challenges

Motivation

Automatic analysis of computer hardware and software requires engines capable of reasoning efficiently about large and complex systems.
Boolean engines such as Binary Decision Diagrams and SAT solvers are typical engines of choice for today's industrial verification applications.

However, systems are usually designed and modeled at a higher level than the Boolean level and the translation to Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories (SMT) is to create verification engines that can reason natively at a higher level of abstraction, while still retaining the speed and automation of today's Boolean engines.

Satisfiability Modulo Theories

Is the following formula satisfiable?
read $($ write $(a, i, v), i) \neq v$

Satisfiability Modulo Theories

Is the following formula satisfiable?
read $($ write $(a, i, v), i) \neq v$

- If the set of allowable models is unrestricted, then the answer is yes.

Satisfiability Modulo Theories

Is the following formula satisfiable?
read $($ write $(a, i, v), i) \neq v$

- If the set of allowable models is unrestricted, then the answer is yes.
- However, if we only consider models that obey the axioms for read and write then the answer is no.

Satisfiability Modulo Theories

T-satisfiability

For a theory T, the T-satisfiability problem consists of deciding whether there exists a model \mathcal{A} and variable assignment α such that $(\mathcal{A}, \alpha) \models T \cup \varphi$ for a given formula φ.

SAT and Theories

- An SMT solver uses a fast SAT solver for Boolean reasoning
- Coupled with specialized theory solvers for theory reasoning

What is SMT good for?

Generic Reasoning

- Given some conditions X, is it possible for Y to happen, and if so how?
- X and Y must be expressible in logic
- SMT offers a lot of expressive power
- Possibility to define a new theory if all else fails

What SMT is NOT good for

- Reasoning in the presense of uncertainty (e.g. probabilities)
- Heavy use of quantifiers
- Difficult constraints with no Boolean structure (e.g. Linear Programs)

Proofs and SMT: a history

First Attempts

- Cooperating Validity Checker (CVC), 2002a
- First SMT solver to attempt proof-production
- Wanted to be able to independently certify results
- Aid in finding and correcting correctness bugs
- Surprisingly - most important contribution was use in producing explanations of inconsistency

[^0]
Proofs and SMT: a history

Communication with skeptical proof assistants

- CVC Lite, 2005 ${ }^{\text {a }}$
- Successor to CVC, ad hoc proof format
- Translator from proof format to HOL Light
- Provide access to efficient decision procedures within HOL Light
- And enable use of HOL Light as a proof-checker for CVC Lite
- haRVey, $2006{ }^{\text {b }}$
- Integration with Isabelle/HOL
- CVC3, 2008 ${ }^{\text {c }}$
- Effort to certify SMT-LIB benchmark library
- Found benchmarks with incorrect status
- Found bug in CVC3

[^1]
Proofs and SMT: a history

Additinal solvers support proofs

- Fx7, 2008^{a}
- Quantified reasoning, custom proof-checker
- MathSAT4, 2008^{b}
- Internal proof engine for unsat cores and interpolants
- Z3, 2008 ${ }^{\text {c }}$
- Proof traces - single rule for theory lemmas
- veriT, 2009 ${ }^{\text {d }}$
- Proof production a primary goal in veriT

[^2]
Proofs and SMT: a history

Current Status

- No agreed-upon format for proofs in SMT
- Solvers targeting self-contained, independently-checkable proofs
- CVC4, veriT
- Proof traces
- Z3
- Solvers using proof technology to drive other features (e.g. interpolants)
- MathSAT, SMTInterpol

Satisfiability Modulo Theories \approx SAT + expressiveness

Satisfiability of first-order formulas with interpreted and non-interpreted predicates and functions

Interpreted: Axioms (e.g. arrays) or Structure (e.g. linear arithmetic)

- SAT solvers

$$
\neg[(p \Rightarrow q) \Rightarrow[(\neg p \Rightarrow q) \Rightarrow q]]
$$

- congruence closure (uninterpreted symbols + equality)

$$
a=b \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b))]
$$

- in combination with arithmetic

$$
a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b+x))]
$$

- quantifiers

Alt-Ergo, Barcelogic, CVC4, MathSAT, OpenSMT, SMTInterpol, veriT, Yices, z3

Standard input language: SMT-LIB 2.0

$$
a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

In SMT-LIB 2.0 format:

```
(set-logic QF_UFLRA)
(set-info :source | Example formula in SMT-LIB 2.0 |)
(set-info :smt-lib-version 2.0)
(declare-fun f (Real) Real)
(declare-fun q (Real) Bool)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun x () Real)
(assert (and (<= a b) (<= b (+ a x)) (= x 0)
    (or (not (= (f a) (f b)))
    (and (q a) (not (q (+ b x)))))))
(check-sat)
(exit)
```


From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable
New clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable
New clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable
New clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable
New clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
Theory reasoner: $a \leq b, b \leq a+x, x=0, f(a) \neq f(b)$ unsatisfiable
New clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

From propositional SAT to SMT: in practice

- online decision procedures
theory checks propositional assignment on the fly
- small explanations
unsat core of propositional assignment
discard classes of propositional assignments (not one by one)
- theory propagation
instead of guessing propositional variable assignments, SAT solver assigns theory-entailed literals
- ackermannization, simplifications, and other magic

Theory and quantifier reasoning

- theory reasoning techniques specific to theories...
- ... but (mostly) interact similarly with the SAT solver
- uninterpreted symbols and equality: congruence closure
- linear arithmetic: mostly simplex
- quantifiers: mostly instantiation

More details to come later (with proof production)

Outline

(1) An overview of SMT solving
(2) Proofs and SMT
(3) Examples of SMT proofs

4 Applications and Challenges

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$

SMT proof: interleaving of SAT proof and theory reasoning proof

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$

SMT proof: interleaving of SAT proof and theory reasoning proof

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
New theory clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$

SMT proof: interleaving of SAT proof and theory reasoning proof

From propositional SAT to SMT

Input: $a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(q(a) \wedge \neg q(b+x))]$
To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge\left[\neg p_{f(a)=f(b)} \vee\left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right]$
New theory clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{x=0} \vee p_{f(a)=f(b)}$
New theory clause: $\neg p_{a \leq b} \vee \neg p_{b \leq a+x} \vee \neg p_{q(a)} \vee p_{q(b+x)}$
SMT proof: interleaving of SAT proof and theory reasoning proof

SMT in practice

- online decision procedures
theory checks propositional assignment on the fly
No influence on proof
- small explanations
unsat core of propositional assignment
discard classes of propositional assignments (not one by one) No influence on proof (small theory clauses)
- theory propagation
instead of guessing propositional variable assignments, SAT solver assigns theory-entailed literals
May need explanation (theory clause)
- ackermannization, simplifications, and other magic Sometimes cumbersome to prove

Challenge: collect enough information

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$

$$
\begin{aligned}
& f(a) \quad f(b) \quad \bullet \text { each term in its equivalence class } \\
& a \quad c \quad b
\end{aligned}
$$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c$

$$
\begin{array}{ll}
f(a) & f(b) \\
& \bullet \text { each term in its equivalence class } \\
& \text { equality } \longrightarrow \text { class merge }
\end{array}
$$

$$
a \xlongequal{a=c} c \quad b
$$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b$

$$
\begin{aligned}
& f(a) \quad f(b) \\
& a \xlongequal[a=c]{a} c \stackrel{c=b}{c=b} b
\end{aligned}
$$

- each term in its equivalence class
- equality \longrightarrow class merge

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b$

$$
f(a) \cdots \cdots(b)
$$

- each term in its equivalence class
- equality \longrightarrow class merge
- congruence \longrightarrow class merge

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \text { - equality } \longrightarrow \text { class merge } \\
& \text { o congruence } \longrightarrow \text { class merge } \\
a \xrightarrow{a=c} c \stackrel{c=b}{ } b & \text { - detect conflicts }
\end{array}
$$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \begin{array}{l}
\text { e each term in its equivalence class } \\
\\
\\
a \xrightarrow{a=c} c \stackrel{\text { equality } \longrightarrow}{\longrightarrow} \text { class merge }
\end{array} \\
& \begin{array}{l}
\text { - congruence } \longrightarrow \text { class merge }
\end{array} \\
\text { o detect conflicts }
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \begin{array}{l}
\text { - equality } \longrightarrow \text { class merge }
\end{array} \\
a \xrightarrow{a=c} c \stackrel{c=b}{ } b & \begin{array}{l}
\text { o congruence } \longrightarrow \text { class merge } \\
\\
\end{array}
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proof, from graph:

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \text { - equality } \longrightarrow \text { class merge } \\
& \begin{array}{l}
\text { - congruence } \longrightarrow \text { class merge }
\end{array} \\
a \xrightarrow{a=c} c \stackrel{c=b}{ } b & \text { - detect conflicts }
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proof, from graph:

- conflict $f(a) \neq f(b)$ with an implied literal

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \text { - equality } \longrightarrow \text { class merge } \\
& \begin{array}{l}
\text { - congruence } \longrightarrow \text { class merge }
\end{array} \\
a \xrightarrow{a=c} c \stackrel{c=b}{ } b & \text { - detect conflicts }
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proof, from graph:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \text { - equality } \longrightarrow \text { class merge } \\
a \xrightarrow{a=c} c \stackrel{c=b}{ } b & \text { - congruence } \longrightarrow \text { class merge } \\
& \text { o detect conflicts }
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proof, from graph:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$
- and $a=b$ comes from transitivity: $a \neq c \vee c \neq b \vee a=b$

Theory reasoning proofs

Consider the terms: $a, b, c, f(a), f(b)$
And literals: $a=c, c=b, f(a) \neq f(b)$

$$
\begin{array}{ll}
f(a)^{f(a) \neq f(b)} f(b) & \text { - each term in its equivalence class } \\
& \begin{array}{l}
\text { - equality } \longrightarrow \text { class merge }
\end{array} \\
a \xrightarrow[a=c]{ } c \stackrel{c=b}{ } b & \text { o congruence } \longrightarrow \text { class merge } \\
& \text { o detect conflicts }
\end{array}
$$

In practice: efficient (merge, congruence and conflict detection)
Theory reasoning proof, from graph:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$
- and $a=b$ comes from transitivity: $a \neq c \vee c \neq b \vee a=b$
- resolution compute the theory clause: $a \neq c \vee c \neq b \vee f(a)=f(b)$

Theory reasoning proofs

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal

Theory reasoning proofs

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$

Theory reasoning proofs

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$
- and $a=b$ comes from another theory clause:

$$
\neg a \leq b \vee \neg b \leq a+x \vee x \neq 0 \vee a=b
$$

Theory reasoning proofs

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$
- and $a=b$ comes from another theory clause:

$$
\neg a \leq b \vee \neg b \leq a+x \vee x \neq 0 \vee a=b
$$

- resolution compute the theory clause:

$$
\neg a \leq b \vee \neg b \leq a+x \vee x \neq 0 \vee f(a)=f(b)
$$

Theory reasoning proofs

Theory reasoning proof, with combination of theories:

- conflict $f(a) \neq f(b)$ with an implied literal
- entailed by congruence: $a \neq b \vee f(a)=f(b)$
- and $a=b$ comes from another theory clause:

$$
\neg a \leq b \vee \neg b \leq a+x \vee x \neq 0 \vee a=b
$$

- resolution compute the theory clause:

$$
\neg a \leq b \vee \neg b \leq a+x \vee x \neq 0 \vee f(a)=f(b)
$$

Over-simplification :

- delayed theory combination
- model-based combination

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

$$
\text { - } y>1
$$

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

$$
\text { - } y>1, x<1, y \leq x
$$

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

- $y>1, x<1, y \leq x$
- inconsistency

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

- $y>1, x<1, y \leq x$
- inconsistency

$$
\begin{array}{r}
x<1 \\
+\quad y \leq x \\
-\quad y>1 \\
\hline
\end{array}
$$

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

- $y>1, x<1, y \leq x$
- inconsistency

$$
\begin{array}{r}
x<1 \\
+\quad y \leq x \\
-\quad y>1 \\
\hline 0<0
\end{array}
$$

- Clause: $\neg y>1 \vee \neg x<1 \vee \neg y \leq x$

Theory reasoning proofs

- Many linear arithmetic decision procedures based on simplex
- Simplex detects inconsistency
- Farkas lemma can be used to provide certificate

- $y>1, x<1, y \leq x$
- inconsistency

$$
\begin{array}{r}
x<1 \\
+\quad y \leq x \\
-\quad y>1 \\
\hline
\end{array}
$$

- Clause: $\neg y>1 \vee \neg x<1 \vee \neg y \leq x$

And also

- integers: branches, cuts
- simplifications, bound propagations...

Quantifiers and proofs

- Quantifiers mainly come from instantiation
- Proof is simply

$$
\neg \forall x \varphi(x) \vee \varphi(t)
$$

- $\forall x \varphi(x)$ is an abstract Boolean variable for the SAT solver
- Resolution, again
- Skolemization is a problem though

Other theories

Other theories

- arrays
- inductive data types
- bit-vectors
- strings
- non-linear arithmetic

Outline

(1) An overview of SMT solving
(2) Proofs and SMT
(3) Examples of SMT proofs
(4) Applications and Challenges

CVC4 proof (1/3)

```
(check
(% a var_real
(% b var_real
(% x var_real
(% f (term (arrow Real Real))
(% q (term (arrow Real Bool))
(% @F1 (th_holds (<=_Real (a_var_real a) (a_var_real b)))
(% @F2 (th_holds (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))))
(% @F3 (th_holds (= Real (a_var_real x) (a_real 0/1)))
(% @F4 (th_holds (or (not (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))))
    (and (= Bool (apply _ _ q (a_var_real a)) btrue)
    (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))))
(: (holds cln)
(decl_atom (<=_Real (a_var_real a) (a_var_real b)) (\ v1 (\ a1
(decl_atom (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))) (\ v2 (\ a2
(decl_atom (= Real (a_var_real x) (a_real 0/1)) (\ v3 (\ a3
(decl_atom (= Real (a_var_real a) (a_var_real b)) (\ v4 (\ a4
(decl_atom (= Real (apply _ _ f (a_var_real a)) (apply_ _ f (a_var_real b))) (\ v5 (\ a5
(decl_atom (= Bool (apply _ _ q (a_var_real a)) btrue) (\ v6 (\ a6
(decl_atom (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse) (\ v7 (\ a7
(decl_atom (<=_Real (a_var_real b) (a_var_real a)) (\ v8 (\ a8
(decl_atom (= Real (a_var_real a) (+_Real (a_var_real b) (a_var_real x))) (\ v9 (\ a9
(decl_atom (and (= Bool (apply _ _ q (a_var_real a)) btrue)
    (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))
    (\ v10 (\ a10
```


CVC4 proof (2/3)

```
; CNFication
```



```
; Theory lemmas
; ~a4 ^ a1 ^ a8 => false
(satlem _ _ (asf _ _ _ a4 (\l4 (ast _ _ _ al (\ l1 (ast _ _ _ a8 (\ l8
    (clausify_false (contra _ l1
    (or_elim_1 _ _ (not_not_intro _ (<=_to_>=_Real _ _ l8)) (not_=_to_>=_=<_Real _ _ l4))))))))))
    (\ C6
; a2 ^ a3 ^ ~a8 => false
(satlem _ _ (ast _ _ _ a2 (\ l2 (ast _ _ _ a3 (\ l3 (asf _ _ _ a8 (\ l8 (clausify_false
    (poly_norm_>= _ _ _ (<=_to_>=_Real _ _ l2) (pn_- _ _ _ _ _ (pn_+
        (pn_var a) (pn_var x)) (pn_var b)) (\ pn2
    (poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
    (poly_norm_> _ _ _ (not_<=_to_>_Real _ _ l8) (pn_- _ _ _ _ _ (pn_var b) (pn_var a)) (\ pn8
    (lra_contra_> _ (lra_add_>_>= _ _ _ pn8 (lra_add_=_>= _ _ _ pn3 pn2))))))))))))))))) (\ C7
; a4 ^ ~a5 => false
(satlem _ _ (ast _ _ _ a4 (\ l4 (asf _ _ _ a5 (\ l5 (clausify_false
    (contra _ (cong _ _ _ _ _ _(refl _ f) l4) l5)))))) (\ C8
```


CVC4 proof (3/3)

```
; a3 ^ a4 ^ ~a9 => false
(satlem _ _ (ast _ _ _ a3 (\ 13 (ast _ _ _ a4 (\ l4 (asf _ _ _ a9 (\ l9 (clausify_false
    (poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
    (poly_norm_= _ _ _ l4 (pn_- _ _ _ _ _ (pn_var a) (pn_var b)) (\ pn4
    (poly_norm_distinct _ _ _ l9 (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _
        (pn_var b) (pn_var x)) (pn_var a)) (\ pn9
    (lra_contra_distinct _ (lra_add_=_distinct _ _ -
        (lra_add_=_= _ _ _ pn3 pn4) pn9))))))))))))))) (\ C9
; a9 ^ a6 ^ a7 => false
(satlem _ _ (ast _ _ _ a9 (\ 19 (ast _ _ _ a6 (\ 16 (ast _ _ _ a7 (\ l7 (clausify_false
    (contra _ (trans _ _ _ _ (trans _ _ _ _ (symm _ _ _ l6) (cong _ _ _ _ _ _
        (refl _ q) l9)) l7) b_true_not_false)))))))) (\ C10
; Resolution proof
(satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ C6 C1 v1) (Q _ _ (Q _ _ C7 C2 v2) C3 v3) v8)
(Q__( (Q__(Q___(Q__(R__ C9 C10 v9) C3 v3) C4 v6) C5 v7) C8 v5) v4)
```


Examples of SMT proofs

veriT proof (1/2)

```
(set .cl (input :conclusion ((and (<= a b) (<= b (+ a x)) (= x 0)
                                (or (\operatorname{not (= (f b) (f a))) (and (qa) (not (q (+ b x)))))))))}
(set .c2 (and :clauses (.c1) :conclusion ((<= a b))))
(set .c3 (and :clauses (.c1) :conclusion ((<= b (+ a x)))))
(set .c4 (and :clauses (.c1) :conclusion ((= x 0))))
(set .c5 (and :clauses (.c1) :conclusion
        ((or (not (= (f b) (f a))) (and (qa) (not (q (+ b x))))))))
(set .c6 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (q a))))
(set.c7 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (not (q (+ b x))))))
(set .c8 (or :clauses (.c5) :conclusion
    ((not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))
(set .c9 (eq_congruent :conclusion ((not (= a b)) (= (f b) (f a)))))
(set .cl0 (la_disequality :conclusion ((or (= a b) (not (<= a b)) (not (<= b a))))))
(set .cl1 (or :clauses (.c10) :conclusion ((= a b) (not (<= a b)) (not (<= b a)))))
(set .c12 (resolution :clauses (.c11 .c2) :conclusion ((= a b) (not (<= b a)))))
(set .c13 (la_generic :conclusion ((not (<= b (+ a x))) (<= b a) (not (= x 0)))))
(set .c14 (resolution :clauses (.c13 .c3 .c4) :conclusion ((<= b a))))
(set .c15 (resolution :clauses (.c12 .c14) :conclusion ((= a b))))
(set .c16 (resolution :clauses (.c9 .c15) :conclusion ((= (f b) (f a)))))
(set .c17 (resolution :clauses (.c8 .c16) :conclusion ((and (q a) (not (q (+ b x)))))))
(set .c18 (resolution :clauses (.c6 .c17) :conclusion ((q a))))
(set .c19 (resolution :clauses (.c7 .c17) :conclusion ((not (q (+ b x))))))
```


Examples of SMT proofs

veriT proof (2/2)

```
(set .c20 (eq_congruent_pred :conclusion ((not (= a (+ b x))) (not (q a)) (q (+ b x)))))
(set .c21 (resolution :clauses (.c20 .c18 .c19) :conclusion ((not (= a (+ b x))))))
(set .c22 (la_disequality :conclusion
    ((or (= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c23 (or :clauses (.c22) :conclusion
    ((= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c24 (resolution :clauses (.c23 .c21) :conclusion
    ((\operatorname{not }(<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c25 (eq_congruent_pred :conclusion
    ((not (= a b)) (not (= (+ a x ) (+ b x))) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c26 (eq_congruent :conclusion ((not (= a b)) (not (= x x)) (= (+ a x) (+ b x)))))
(set .c27 (eq_reflexive :conclusion ((= x x))))
(set .c28 (resolution :clauses (.c26 .c27) :conclusion ((not (= a b)) (= (+ a x) (+ b x)))))
(set .c29 (resolution :clauses (.c25 .c28) :conclusion
    ((\operatorname{not }(=\textrm{a}b)) (<= a (+ b x)) (not (<= b (+ a x ))))))
(set .c30 (resolution :clauses (.c29 .c3 .c15) :conclusion ((<= a (+ b x)))))
(set .c31 (resolution :clauses (.c24 .c30) :conclusion ((not (<= (+ b x) a)))))
(set .c32 (la_generic :conclusion ((<= (+ b x) a) (not (= a b)) (not (= x 0)))))
(set .c33 (resolution :clauses (.c32 .c4 .c15 .c31) :conclusion ()))
```


z3 proof (1/2)

```
(let (($x82 (q b)) (?x49 (* (- 1.0) b)) (?x50 (+ a ?x49))
    ($x51 (<= ?x50 0.0)) (?x35 (f b)) (?x34 (f a))
    ($x36 (= ?x34 ?x35)) ($x37 (not $x36))
    ($x43 (or $x37 (and (q a) (not (q (+ b x))))))
    ($x33 (= x 0.0)) (?x57 (+ a ?x49 x)) ($x56 (>= ?x57 0.0))
    ($x44 (and (<= a b) (<= b (+ a x)) $x33 $x43))
    (@x60 (monotonicity (rewrite (= (<= a b) $x51))
    (rewrite (= (<= b (+ a x)) $x56))
    (= $x44 (and $x51 $x56 $x33 $x43))))
    (@x61 (mp (asserted $x44) @x60 (and $x51 $x56 $x33 $x43)))
    (@x62 (and-elim @x61 $x51)) ($x71 (>= ?x50 0.0)))
(let ((@x70 (trans (monotonicity (and-elim @x61 $x33) (= ?x57 (+ a ?x49 0.0)))
    (rewrite (= (+ a ?x49 0.0) ?x50)) (= ?x57 ?x50))))
(let ((@x74 (mp (and-elim @x61 $x56) (monotonicity @x70 (= $x56 $x71)) $x71)))
(let ((@x121 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))
    (= $x82 (q a)))))
(let (($x38 (q a)) ($x96 (or (not $x38) $x82)) ($x97 (not $x96)))
(let ((@x115 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))
    (= ?x35 ?x34))))
(let (($x100 (or $x37 $x97)))
(let ((@x102 (monotonicity (rewrite (= (and $x38 (not $x82)) $x97))
    (= (or $x37 (and $x38 (not $x82))) $x100))))
(let (($x85 (not $x82)))
(let (($x88 (and $x38 $x85)))
(let (($x91 (or $x37 $x88)))
(let ((@x81 (trans (monotonicity (and-elim @x61 $x33) (= (+ b x) (+ b 0.0)))
    (rewrite (= (+ b 0.0) b)) (= (+ b x) b))))
(let ((@x87 (monotonicity (monotonicity @x81 (= (q (+ b x)) $x82)) (= (not (q (+ b x))) $x85))))
```


z3 proof (2/2)

```
(let ((@x93 (monotonicity (monotonicity @x87 (= (and $x38 (not (q (+ b x)))) $x88))
    (= $x43 $x91))))
(let ((@x103 (mp (mp (and-elim @x61 $x43) @x93 $x91) @x102 $x100)))
(let ((@x119 (unit-resolution (def-axiom (or $x96 $x38))
    (unit-resolution @x103 (symm @x115 $x36) $x97) $x38)))
(let ((@x118 (unit-resolution (def-axiom (or $x96 $x85))
    (unit-resolution @x103 (symm @x115 $x36) $x97) $x85)))
(unit-resolution @x118 (mp @x119 (Symm @x121 (= $x38 $x82)) $x82) false))))))))))))))))))
```


Outline

(1) An overview of SMT solving
(2) Proofs and SMT
(3) Examples of SMT proofs

4 Applications and Challenges

Applications

Current Applications

- Proof reconstruction within skeptical proof assistants ${ }^{a, b, c}$
- Interpolant generation ${ }^{d, e, f}$
- Unsat core computation ${ }^{g}$

[^3]
Challenges

Challenges

- Challenge to collect and store proof information efficiently
- Producing proofs for sophisticated preprocessing techniques
- Producing proofs for modules that use external tools
- Standardizing a proof format

Lean Theorem Prover

- New theorem prover started by L. de Moura and Soonho Kong.
- Contributors: Jeremy Avigad, Cody Roux, Floris van Doorn, Parikshit Khanna
- Many thanks to: Georges Gonthier, Nikhil Swamy, Vladimir Voevodsky
- Open source (Apache 2.0),
https://github.com/leanprover/lean
- can be used as an automatic prover (SMT), and as a proof assistant
- Based on Type Theory, and incorporates ideas of many other systems:
Agda, Coq, HOL-Light, Isabelle, PVS, ...

Lean: Two Layers Architecture

- First layer: type checker, APIs for creating terms, environment, ...
- Configuration options: e.g., impredicative Prop, proof irrelevance,
- Universe polymorphism.
- 5k lines of C++ code.
- Second layer: additional (trusted) components.
- Example: inductive datatypes (extra 500 lines of code).
- We currently support two flavors/instances: Standard and HoTT.

Lean: As a Library

- Meant to be used as a standalone system and as a software library.
- Extensive API and can be easily embedded in other systems.
- SMT solvers can use the Lean API to create proof terms that can be independently checked.
- APIs in C++, Lua (and Python coming soon).

Lean: Proofs

- More expressive language for encoding proofs provides several advantages.
- We can easily add new "proof rules" without modifying the proof checker (i.e., type checker).
- Proof rules such as mp and monotonicity used in Z3 are just theorems in Lean.

Lean: Automation

- First, define theory, then prove theorems/properties, then implement automation.
- Example: suppose we are implementing a procedure for Presburger Arithmetic.

```
theorem add_comm (n m:nat) : n +m=m + n
:= induction_on m
    (trans (add_zero_right _) (symm (add_zero_left _)))
    (take k IH,
        calc n + succ k = succ ( }\textrm{n}+\textrm{k}) : add_succ_right _ _
            ... = succ (k + n) : {IH}
            ... = succ k + n : symm (add_succ_left _ _))
```


Lean: Automation

- Pre-processing steps such as Skolemization can be supported in a similar way.

```
theorem skolem_th {A : Type} {B : A -> Type} {P : forall x : A, B x -> Bool} :
    (forall x, exists y, P x y) = (exists f, (forall x, P x (f x)))
:= iff_intro
    (assume H : (forall x, exists y, P x y), axiom_of_choice H)
    (assume H : (exists f, (forall x, P x (f x))),
        take x, obtain (fw : forall x, B x) (Hw : forall x, P x (fw x)), from H,
            exists_intro (fw x) (Hw x))
```


Lean: Pre-processing

- The pre-processing "issue" is addressed by providing a generic rewriting engine that can use any previously proved theorems.
- The engine accepts two kinds of theorems: congruence theorems and (conditional) equations.
- It also supports a λ-Prolog like engine.

```
theorem forall_or_distributel {A : Type} (p : Bool) (q : A -> Bool)
    : (forall x, q x \/ p) = ((forall x, q x) \/ p)
theorem forall_or_distributer {A : Type} (p : Bool) (q : A -> Bool)
    :(forall x, p \/ q x) = (p \/ forall x, q x)
```


[^0]: ${ }^{\text {a Stump, Barrett, Dill. CVC: A Cooperating Validity Checker, CAV '02. }}$

[^1]: ${ }^{a}$ McLaughlin, Barrett, Ge. Cooperating Theorem Provers: A Case Study Combining HOL-Light and CVC Lite, PDPAR '05.
 ${ }^{b}$ Fontaine, Marion, Merz, Nieto, Tiu. Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof Assistants, TACAS '06.
 ${ }^{c}$ Ge, Barrett. Proof Translation and SMT-LIB Benchmark Certification: A Preliminary Report, SMT '08.

[^2]: ${ }^{a}$ Moskal. Rocket-Fast Proof Checking for SMT Solvers, TACAS '08.
 ${ }^{b}$ Bruttomesso, Cimatti, Franzén, Griggio, Sebastiani. The MathSAT 4 SMT Solver, CAV '08.
 ${ }^{c}$ de Moura, Bjørner. Proofs and Refutations, and Z3, LPAR '08.
 ${ }^{d}$ Bouton, de Oliveira, Déharbe, Fontaine. veriT: An Open, Trustable and Efficient SMT-Solver, CADE '09.

[^3]: ${ }^{a}$ Keller. A Matter of Trust: Skeptical Communication Between Coq and External Provers, PhD Thesis, Ecole Polytechnique, 2013.
 ${ }^{b}$ Armand, Faure, Grégoire, Keller, Thery, Werner. A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses, CPP '11.
 ${ }^{c}$ Böhme. Proof Reconstruction for Z3 in Isabelle/HOL, SMT'09.
 ${ }^{d}$ Reynolds, Tinelli, Hadarean. Certified Interpolant Generation for EUF, SMT '11.
 ${ }^{e}$ Hofferek, Gupta, Könighofer, Jiang, Bloem. Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof, FMCAD '13.
 ${ }^{f}$ McMillan. Interpolants from Z3 Proofs, FMCAD '11.
 ${ }^{g}$ Déharbe, Fontaine, Guyot, Voisin. SMT Solvers for Rodin, Abstract State Machines '12.

