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Cut-Elimination

Applications:
proofs of theorems in number theory may use topological
structures. Cut-elimination yields proofs without topology.

other applications:

I extraction of bounds via Herbrand’s theorem

I extraction of programs from proofs



Gentzen’s Hauptsatz:

For every (LK-) proof ϕ of a formula A there exists
a proof ϕ′ of A without cuts; ϕ′ can be constructed
algorithmically.



Sequent Calculus

Sequent: A ` B, for finite multi-sets of formulas A,B.
A1, . . . ,An ` B1, . . . ,Bm represents∧
Ai →

∨
Bj .

` : separation-symbol.

LK: calculus on sequents, based on logical and structural rules.
axioms: A ` A for atoms A.



The logical rules of LK

∧-introduction:
A, Γ ` ∆

A ∧ B, Γ ` ∆
∧ : l1

B, Γ ` ∆

A ∧ B, Γ ` ∆
∧ : l2

Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A ∧ B
∧ : r

∨-introduction:
A, Γ ` ∆ B, Γ ` ∆

A ∨ B, Γ ` ∆
∨ : l

Γ ` ∆,A

Γ ` ∆,A ∨ B
∨ : r1

Γ ` ∆,B

Γ ` ∆,A ∨ B
∨ : r2

→-introduction:
Γ1 ` ∆1,A B, Γ2 ` ∆2

A→ B, Γ1, Γ2 ` ∆1,∆2
→: l

A, Γ ` ∆,B

Γ ` ∆,A→ B
→: r



The logical rules of LK

¬-introduction:

Γ ` ∆,A

¬A, Γ ` ∆
¬ : l

A, Γ ` ∆

Γ ` ∆,¬A ¬ : r

∀-introduction (eigenvariable cond. for ∀ : r):

A(x/t), Γ ` ∆

(∀x)A(x), Γ ` ∆
∀ : l

Γ ` ∆,A(x/y)

Γ ` ∆, (∀x)A(x)
∀ : r

∃-introduction (the eigenvariable conditions for ∃ : l are these for
∀ : r):

A(x/y), Γ ` ∆

(∃x)A(x), Γ ` ∆
∃ : l

Γ ` ∆,A(x/t)

Γ ` ∆, (∃x)A(x)
∃ : r



The structural rules of LK

weakening:

Γ ` ∆
Γ ` ∆,A

w : r Γ ` ∆
A, Γ ` ∆

w : l

contraction:

A,A, Γ ` ∆

A, Γ ` ∆
c : l

Γ ` ∆,A,A

Γ ` ∆,A
c : r

cut:
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
cut(A)



example: proof with cut

Let ϕ =

P(a) ` P(a)

P(a) ` P(a) ∨ Q(a)
∨ : r1

P(a) ` ∃y(P(y) ∨ Q(y))
∃ : r

Q(b) ` Q(b)

Q(b) ` P(b) ∨ Q(b)
∨ : r2

Q(b) ` ∃y(P(y) ∨ Q(y))
∃ : r

P(a) ∨ Q(b) ` ∃y(P(y) ∨ Q(y))
∨ : l

(χ)

∃y(P(y) ∨ Q(y)), ∀x.¬P(x) ` ∃z.Q(z)

P(a) ∨ Q(b), ∀x.¬P(x) ` ∃z.Q(z)
cut

for χ =

P(α) ` P(α)

P(α),¬P(α) ` ¬ : l

P(α),¬P(α) ` Q(α)
w : r

Q(α) ` Q(α)

Q(α),¬P(α) ` Q(α)
w : l

P(α) ∨ Q(α),¬P(α) ` Q(α)
∨ : l

P(α) ∨ Q(α),¬P(α) ` ∃z .Q(z)
∃ : r

P(α) ∨ Q(α), ∀x .¬P(x) ` ∃z .Q(z)
∀ : l

∃y(P(y) ∨ Q(y)),∀x .¬P(x) ` ∃z .Q(z)
∃ : l



proof without cut

ψ =

P(a) ` P(a)

P(a),¬P(a) ` ¬ : l

P(a),¬P(a) ` Q(b)
w : r

Q(b) ` Q(b)

Q(b),¬P(a) ` Q(b)
w : l

P(a) ∨ Q(b),¬P(a) ` Q(b)
∨ : l

P(a) ∨ Q(b),¬P(a) ` ∃z .Q(z)
∃ : r

P(a) ∨ Q(b), ∀x .¬P(x) ` ∃z .Q(z)
∀ : l



Gentzen’s method of cut-elimination:

I reduction of rank and grade.

I “peeling” the cut-formulas from outside.

I elimination of an uppermost cut.

The method can be described as a

normal form computation

based on a set of rules R.

Computational features:

I very slow.

I weak in detecting redundancy.
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Example of a Gentzen reduction:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

P(a) ∧ P(b) ` (∃x)P(x)
∃ : r

(∀x)P(x) ` (∃x)P(x)
cut

rank = 3, grade = 1.
reduce to rank = 2, grade = 1:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r



P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r

rank = 2, grade = 1. Reduce to grade = 0, rank = 3:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(a) ` P(a)

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r

eliminate cut with axiom:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

(∀x)P(x) ` (∃x)P(x)
∃ : r



Cut-elimination by Resolution (CERES)

based on a structural analysis of LK-proofs.

sub-derivations into cuts

↗
ϕ

↘
sub-derivation into end sequent

CL(ϕ): characteristic clause set,
carries substantial information on derivations of cut formulas.
clause = atomic sequent.
cut-elimination = reduction to atomic cuts.



The Method CERES

Example: ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u)→ Q(u) ` P(u)→ Q(u)
→: r

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

S = {P(u) `} × {` Q(u)}.



Example

ϕ =
ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a),P(a)→ Q(v) ` Q(v)
→: l

P(a)→ Q(v) ` P(a)→ Q(v)
→: r

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

S ′ = {` P(a)} ∪ {Q(v) `}.



cut-ancestors in axioms:

S1 = {P(u) `}, S2 = {` Q(u)}, S3 = {` P(a)}, S4 = {Q(v) `}.

S = S1 × S2 = {P(u) ` Q(u)}.

S ′ = S3 ∪ S4 = {` P(a); Q(v) `}.

characteristic clause set:

CL(ϕ) = S ∪ S ′ = {P(u) ` Q(u); ` P(a); Q(v) `}.



Projection of ϕ to CL(ϕ)

I Skip inferences leading to cuts.

I Obtain cut-free proof of end-sequent + a clause in CL(ϕ).

proof ϕ of S

⇓
cut-free proof ϕ(C ) of S ◦ C .



Let ϕ be the proof of the sequent
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)) shown above.

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.

Skip inferences in ϕ1 leading to cuts:

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

ϕ(C1) =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

P(u), (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),Q(u)
w : r



ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.

For C2 = ` P(a) we obtain the projection ϕ(C2):

P(a) ` P(a)

P(a) ` P(a),Q(v)
w : r

` P(a)→ Q(v),P(a)
→: r

` (∃y)(P(a)→ Q(y)),P(a)
∃ : l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),P(a)
w : l



The Method CERES

given proof ϕ,

I extract characteristic clause set CL(ϕ),

I compute the projections of ϕ to clauses in CL(ϕ),

I construct an R-refutation γ of CL(ϕ),

I insert the projections of ϕ into γ ⇒ CERES normal form of ϕ.



Example

ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {C1 : P(u) ` Q(u), C2 : ` P(a), C3 : Q(u) `}.
a resolution refutation δ of CL(ϕ):

` P(a) P(u) ` Q(u)

` Q(a)
R

Q(v) `
` R

ground projection γ of δ:

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

via σ = {u ← a, v ← a}.



Example

end sequent S of ϕ, S = B ` C .
γ =

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

CERES-normal form ϕ(γ) =

(χ2)
B ` C ,P(a)

(χ1)
P(a),B ` C ,Q(a)

B,B ` C ,C ,Q(a)
cut

(χ3)
Q(a),B ` C

B,B,B ` C ,C ,C
cut

S
contractions



Generality of CERES

CERES does not only work for LK.

I any sound sequent calculus for classical logic (with cut) does
the job.

I unary rules do not “count”.

I necessary: auxiliary formulas, principal formulas, ancestor
relation

Example: LKDe
LK + equality rules + definition introduction.
Important to formalization of mathematical proofs.
Corresponding clausal calculus: resolution + paramodulation.



Experiments with CERES

I underlying theorem prover: Prover9.

I very large proofs can be handled.

I Analysis of an example from C. Urban.
mathematically different proofs obtained by CERES.

I Analysis of Fürstenberg’s proof of the infinity of primes.
Extraction of Euclid’s construction.



instantiation sequents

instantiation sequent:

Let S be a sequent of the form

(∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm,

where ∀x̄i stands for (∀x1,i ) . . . (∀xki ,i ). Let Fi = F ′i ,1, . . .F
′
i ,ki

and
Gj = G ′j ,1, . . .G

′
j ,lj

, where the F ′i ,m are instances of Fi , the G ′j ,r
instances of the Gj . Then a sequent of the form

S∗ : F1,F2, . . .Fn ` G1, . . .Gm

is called an instantiation sequent of S



instantiation sequents: examples

S = (∀x)P(x) ` P(a) ∧ P(b).

P(a) ` P(a) ∧ P(b),
P(b) ` P(a) ∧ P(b),
P(a),P(b) ` P(a) ∧ P(b)
are instantiation sequents of S .

S1 = P(a), (∀x)(P(x)→ P(f (x)) ` (∃y)P(f (f (y)))

P(a),P(a)→ P(f (a)),P(f (a))→ P(f (f (a))) ` P(f (f (a)))

is an instantiation sequent of S1.



an application of cut-elimination: Herbrand’s theorem

Let ϕ be an LK-proof of a sequent S of the form

(∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm,

where ∀x̄i stands for (∀x1,i ) . . . (∀xki ,i ). Then there exists an
instantiation sequent S∗ of S which is LK-provable. S∗ is called a
Herbrand sequent of S .

proof (given in Gentzen’s midsequent theorem) by

I cut-elimination on ϕ yielding a proof ψ,

I construction of S∗ via ψ by induction on the number of
inferences in ψ and by permuting the order of inferences

full cut-elimination is not necessary: quantifier-free cuts are
admitted!



construction of a Herbrand sequent

given a proof ϕ without quantified cuts of

S : (∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm.

I collect all instances F ′i , G ′j appearing in ϕ,

I construct an instantiation sequent S∗ of S with this instances.

I then S∗ is a Herbrand sequent.



construction of a Herbrand sequent: example

proof:

P(a) ` P(a) P(f (a)) ` P(f (a))

P(a), P(a)→ P(f (a)) ` P(f (a))
→ : l

P(a), (∀x)(P(x)→ P(f (x))) ` P(f (a))
∗

P(f (a)) ` P(f (a)) P(f (f (a))) ` P(f (f (a)))

P(f (a)), P(f (a))→ P(f (f (a))) ` P(f (f (a)))
→ : l

P(f (a)), (∀x)(P(x)→ P(f (x))) ` P(f (f (a)))
∗

P(a), (∀x)(P(x)→ P(f (x))), (∀x)(P(x)→ P(f (x))) ` P(f (f (a)))
cut

P(a), (∀x)(P(x)→ P(f (x))) ` P(f (f (a)))
c : l

extracted Herbrand sequent:

P(a),P(a)→ P(f (a)),P(f (a))→ P(f (f (a))) ` P(f (f (a))).



Herbrand sequents: importance

I reduction of a theorem in predicate logic to a theorem in
propositional logic.

I Herbrand sequents contain the key information of
mathematical proofs,

I quantifier-instances are crucial in ”real” proofs,

I Herbrand sequents are compact representations of cut-free
proofs; this is important in automated proof analysis.

I Herbrand sequents are a basis for automated cut-introduction
methods.



Complexity of cut-elimination

I complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs ϕn of sequents Sn s.t.

I ‖ϕn‖ ≤ 2k∗n and

I for all cut-free proofs ψ of ϕn: ‖ψ‖ > s(n) where

s(0) = 1, s(n + 1) = 2s(n).

There exists no cheap way of cut-elimination in principle!



Complexity

Let e : IN2 → IN be the following function

e(0,m) = m

e(n + 1,m) = 2e(n,m).

I f : INk → INm for k ,m ≥ 1 is called elementary if there exists
an n ∈ IN and a Turing machine π computing f s.t. for the
computing time Tπ of π:

Tπ(l1, . . . , lk) ≤ e(n, |(l1, . . . , lk)|)

where | | = maximum norm on INk .

I s : IN→ IN is defined as s(n) = e(n, 1) for n ∈ IN.

s and e are nonelementary.



Complexity of CERES

essential source of complexity:

I resolution refutation γ of CL(ϕ).

I ‖CL(ϕ)‖ is at most exponential in ‖ϕ‖.
I Computing the global m.g.u. σ and a p-resolution refutation
γ′ from γ is at most exponential in ‖γ‖.

I Let

r(γ′) = max{‖t‖ | t is a term occurring in γ′}.

Then r(γ′) ≤ ‖γ′‖ and, for any clause C ∈ CL(ϕ):

‖Cσ‖ ≤ ‖C‖ ∗ r(γ′),

‖ϕ(Cσ)‖ ≤ ‖ϕ(C )‖ ∗ r(γ′) ≤ ‖ϕ‖ ∗ r(γ′).



Complexity of CERES

ϕ: LK-proof of S .

Let γ be a resolution refutation of CL(ϕ) and γ′ be a
corresponding ground projection.
Then there exists a CERES-normal form ψ of S s.t.

‖ψ‖ ≤ c ∗ ‖γ′‖ ∗ r(γ′) ∗ ‖ϕ‖.



Complexity of CERES

I Resolution complexity:
Let C be an unsatisfiable set of clauses. Then the resolution
complexity of C is defined as

rc(C) = min{‖γ‖ | γ is a resolution refutation of C}.

I Definition:
Let P be a class of skolemized proofs. We say that

CERES is fast on P
if there exists an elementary function f s.t. for all ϕ in P:

rc(CL(ϕ)) ≤ f (‖ϕ‖).
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Efficiency of CERES

CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

I There exists a sequence of LK-proofs ϕn s.t.
I ‖ϕn‖ ≤ 2k∗n and
I all Gentzen-eliminations are of size > s(n).
I CERES is fast on {ϕn | n ∈ IN}.

I There is no nonelementary speed-up of CERES by reductive
methods based on R!



CERES versus Gentzen

is it possible to prove fast cut-elimination of a class P by Gentzen,
but CERES ”fails” on P?

The answer is NO!

I no nonelementary speed-up of CERES by Gentzen!

I there is no class where CERES is slow, but Gentzen reduction
is fast.
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Characteristic Clause Sets and Cut-Reduction

Main Lemma:
Let ϕ,ϕ′ be LK-derivations with ϕ > ϕ′ for a cut reduction
relation > based on R. Then

CL(ϕ) ≤ss CL(ϕ′).

proof:
by cases according to the definitions of > and R. 3

R = set of cut-reduction rules extracted from Gentzen’s proof.

≤ss : subsumption relation on clause sets.



Characteristic Clause Sets and Cut-Reduction

theorem:
Let ϕ be an LK-deduction and ψ be a normal form of ϕ under a
cut reduction relation > based on R. Then

CL(ϕ) ≤ss CL(ψ).

Theorem:
Let ϕ be an LK-derivation and ψ be a normal form of ϕ under a
cut reduction relation >R based on R. Then there exists a
resolution refutation γ of CL(ϕ) s.t.

γ ≤ss RES(ψ).

RES(ψ) = (canonic) resolution refutation of CL(ψ).

results above improved by S. Hetzl and B. Woltzenlogel Paleo.



Characteristic Clause Sets and Cut-Reduction

Corollary 1:
Let ϕ be an LK-derivation and ψ be a normal form of ϕ under a
cut reduction relation >R based on R. Then there exists a
resolution refutation γ of CL(ϕ) s.t.

l(γ) ≤ l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

Corollary 2:
Let ϕ be an LK-derivation and ψ be a normal form of ϕ under a
cut reduction relation >R based on R. Then there exists a
CERES-normal form χ of ϕ s.t.

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ).

proof:
χ is defined by inserting the projections of ϕ into a refutation γ of
CL(ϕ).



Characteristic Clause Sets and Cut-Reduction

Corollary 3: a nonelementary speed-up of CERES by R is
impossible!

There exists no sequence of proofs (ϕn)n∈IN s.t.

(a) there exists an m and R-normal forms ϕ̂n of ϕn s.t.

‖ϕ̂n‖ ≤ e(m, ‖ϕn‖) for all n

and

(b) for all k ∈ N there exists a number m s.t. for all n ≥ m and
for all CERES-normal forms ψ of ϕn

‖ψ‖ > e(k , ‖ϕn‖).



An analysis of Fürstenberg’s proof

Fürstenberg’s proof of the infinitude of primes
Arithmetic progressions can be used as a basis for a topology over
the natural numbers. We will denote an arithmetic progression by

ν(a, b) = {a + bn | n ∈ IN}

for a ∈ IN and b ∈ IN \ {0}.
Proposition:
By defining a set A ⊆ IN as open, when A is either empty or for
each x ∈ A exists an a ∈ IN \ {0} such that ν(x , a) ⊆ A, one
obtains a topology over IN.



An analysis of Fürstenberg’s proof

Lemma:
Every arithmetic progression starting at 0 is closed.

Theorem: There are infinintely many primes.

proof:
P: set of all primes. Assume P is finite. Define

X =
⋃
{ν(0, p) | p ∈ P}.

By the above lemma every ν(0, p) for p ∈ P is closed,
so X is a finite union of closed sets and therefore closed.
Every number different from 1 has a prime divisor, thus X̄ = {1}.
X is a complement of a closed set, so X̄ is open.
But {1} is neither empty nor does it contain an arithmetic
progression, and so {1} is not open. Contradiction!
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1. step: formalization in 2nd-order arithmetic

(a) m ∈ ν(k, l) ≡ ∃n(m = k + n ∗ l).

(b) DIV(l , k) ≡ ∃m.l ∗m = k .

(c) PRIME(k) ≡ 1 < k ∧ ∀l(DIV(l , k)→ (l = 1 ∨ l =
k)).

(d) X ⊆ Y ≡ ∀n(n ∈ X → n ∈ Y ), and
X = Y ≡ X ⊆ Y ∧ Y ⊆ X .

(e) n ∈ X ≡ n /∈ X .

(f) A function p : IN→ IN which enumerates primes is
one that fulfills the property:

∀i∀k(p(i) = k → PRIME(k)).

Definition of p needs the comprehension principle!
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(g) n ∈ S[l ] ≡ ∃m(m ≤ l ∧ n ∈ ν(0, p(m))).
S[l ] describes the set of all elements n which occur in
some ν(0, k), where k is one of the first l + 1 primes
enumerated by p. In mathematical notation we get

S[l ] =
l⋃

m=0

ν(0, p(m)).

(h) F[l ] ≡ ∀k(PRIME(k)↔ ∃m(m ≤ l ∧ k = p(m))).
F[l ] is a formula which asserts that there are only
l + 1 primes, namely {p(0), . . . , p(l)}.

(i) O(X ) ≡ ∀m(m ∈ X → ∃l ν(m, l + 1) ⊆ X ).

(j) C(X ) ≡ O(X ).

(k) ∞(X ) ≡ ∀k∃l k + l + 1 ∈ X .
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translation to schema of first-order proofs:

Take two-sorted (individuals, sets) first-order logic.
(a), (b) and (c) can be taken over. For the others we get:

(d’) x ⊆ y ≡ ∀n(n ∈ x → n ∈ y), and
x = y ≡ x ⊆ y ∧ y ⊆ x .

(e’) n ∈ x ≡ n /∈ x .

(f’) Instead of p we introduce a finite set P[k] defined by

P[k] ≡ {p0} ∪ · · · ∪ {pk}.

(g’) S[k] ≡ ν(0, p0) ∪ · · · ∪ ν(0, pk).

(h’) F[k] ≡ ∀m(PRIME(m)↔ m ∈ P[k]).

(i’) O(x) ≡ ∀m(m ∈ x → ∃l ν(m, l + 1) ⊆ x).

(j’) C(x) ≡ O(x).

(k’) ∞(x) ≡ ∀k∃l k + l + 1 ∈ x .
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I avoid (further) inductions!
I introduce three axioms provable in Peano arithmetic:

1. Every number greater than 0 has a predecessor,
2. every number is in a remainder class modulo l for some l ,
3. every number has a prime divisor.

(1) PRE ≡ ∀k(0 < k → ∃m k = m + 1)

(2) REM ≡ ∀l(0 < l → ∀m∃k(k < l ∧m ∈ ν(k , l)))

(3) PRIME-DIV ≡ ∀m(m 6= 1→ ∃l(PRIME(l) ∧DIV(l ,m)))
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proof schema ϕ1(k) (lemmas proving that {1} is open):

ϕ1(k) :=

ψ1,k (k)
....

F[k],PRIME-DIV ` S[k] = {1}

ψ2,k (k)
....

F[k],PRE,REM ` C(S[k])

F[k], Γ ` C({1})
=: r

....
C({1}) ` O({1})

F[k], Γ ` O({1})
cut

For Γ = F[k],PRIME-DIV,PRE,REM.

S[k] ≡ ν(0, p0) ∪ · · · ∪ ν(0, pk).

F[k] ≡ ∀m(PRIME(m)↔ m ∈ P[k]).
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Main proof schema:

ϕ(k) :=

....
` {1} 6= ∅

ϕ1(k)
....

F[k], Γ ` O({1})

ϕ2....
` ∀x((O(x) ∧ x 6= ∅)→∞(x))

..... . .

O({1}), {1} 6= ∅ ` ∞({1})
cut

{1} 6= ∅,F[k], Γ ` ∞({1})
cut

F[k], Γ ` ∞({1})
cut

....
∞({1}) `

F[k], Γ `
cut

PRIME-DIV,PRE,REM︸ ︷︷ ︸
Γ

` ¬F[k]
¬ : r

F[k] ≡ ∀m(PRIME(m)↔ m ∈ P[k]).



An analysis of Fürstenberg’s proof

the characteristic clause sets of the schema:
after tautology elimination and subsumption

CLr := Cr ∪AX where Cr := A ∪
r⋃

i=0

Bi ∪ {Cr} for

Cr := ` m0 = 1, s1(m0) = p0, . . . , s1(m0) = pr ,

Bi :=

0 < pi ` pi = s7(pi ) + 1

0 < pi ` t0 = s5(pi , t0) + (s6(pi , t0) ∗ pi )
0 < pi , s5(pi , t0) = 0 ` t0 = 0 + (s6(pi , t0) ∗ pi )
0 < pi ` s5(pi , t0) < pi

t0 = pi ,m0 ∗ n0 = t0 ` m0 = 1,m0 = t0

t0 = pi ` 1 < t0

t0 = pi , 1 = n0 ∗ t0 `
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A :=

` m0 = 1, s1(m0) ∗ s4(m0) = m0

` m0 + (((k ∗ (l0 + (1 + 1))) + (l0 ∗ (m0 + 1))) + 1) =

k + ((k + (m0 + 1)) ∗ (l0 + 1))

m0 = k0 + (r0 ∗ ((t0 + 1) ∗ (t1 + 1)))

` m0 = k0 + ((r0 ∗ (t0 + 1)) ∗ (t1 + 1))

m0 = k0 + (r0 ∗ ((t0 + 1) ∗ (t1 + 1)))

` m0 = k0 + ((r0 ∗ (t1 + 1)) ∗ (t0 + 1))

` (((t0 + 1) ∗ t1) + t0) + 1 = (t0 + 1) ∗ (t1 + 1)
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resolution refutation schema for CLr defined.

I obtained Er : 1 < tr `
for tr = p0 ∗ . . . ∗ pr + 1

I transform tr = p0 ∗ . . . ∗ pr + 1 into E ′r : 1 < (sr + 1) + 1 `
for some term sr by resolution and paramodulation.

I derive G : ` 1 < (w + 1) + 1.

I G and E ′r resolve to `. contradiction!

I Euclid’s construction obtained by unification in the resolution
calculus!
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Thank you for your attention!


