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Examples:	  Consumer	  analytics,	  real-‐time	  sensing	  and	  monitoring



Information and	  Analytics

1. Consumer	  analytics

Monitoring	  and	  profiling	  user	  
behavior	  on	  the	  Internet
Learning user	  models	  for	  
targeted	  ads

Examples:
Clickthrough analysis
Location-‐aware	  
recommendations

2.	  Sensor-‐driven decision	  
making

Analytics	  for	  business	  
intelligence

Examples:	  
Smart	  factories
Production	  trends
Computation	  &	  storage	  trends

3.	  Real-‐time	  monitoring

Monitoring	  the	  behaviors of	  
persons,	  things,	  or	  data	  
through	  space	  and	  time

Examples:	  
Inventory	  and	  supply	  chain	  
management

Security	  analytics
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Examples:	  Process	  automation,	  Closed	  loop	  decision	  making,
Complex	  autonomous	  processes



Automation	  and	  control
1. Process	  automation

Controlling	  the	  behaviors of	  
persons,	  things,	  or	  data	  
through	  space	  and	  time

Examples:	  
Software-‐based process	  control
Smart	  factories

2.	  Closed-‐loop	  decision	  making

Feedback	  control	  of	  
consumption	  for	  resources

Examples:
Networked	  smart	  energy	  
management
Smart	  buildings
Health	  monitoring

3.	  Complex	  autonomous	  
systems

Automatic	  control	  in	  open	  
and	  uncertain	  environments

Examples:
Autonomous	  cars	  &	  traffic	  
networks
Robotic	  swarms,	  disaster	  
management
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This	  Talk:	  
Programming	  abstractions,	  Models,	  

and	  Analyses	  for	  developing	  
Large-‐scale	  IoT Systems

Part	  I:	  A	  language	  abstraction
Part	  II:	  Some	  verification	  problems



Cyber-‐physical-‐social	  
Level

??? ???

Enterprise Level Software	  services:
Provisioning,	  scheduling,	  
replication

Distributed	  systems,	  
Datacenters

System	  Level
(Multiple agents)

Discrete systems
Co-‐ordination,	  Communication,	  
Learning

Databases	  &	  Querying,
Machine	  learning

Component	  Level
(Single	  control	  loop)

Hybrid	  systems
Ensure	  temporal	  behaviors

Control loops:	  
sense/compute/actuate

Dynamics	  Level Modeling the	  world:	  ODEs,
Uncertainty

“Classical”	  control	  and	  
signal	  processing:	  AD	  
converters,	  PID controllers



Programming	  Environment

1. Streams and	  stateful transformations	  of	  
streams

2. Asynchronous concurrency,	  real-‐time
3. Uncertainty as	  “first-‐class”	  object
4. Heterogeneous computing	  platforms
5. Distributed infrastructure



Domain-‐Specific	  Languages

• Control:	  Simulink/Stateflow
• Synchronous	  hardware:	  Esterel/Lustre
• Systems	  &	  Networking:	  Click
• Data	  processing:	  Apache	  Spark	  Streaming

• This	  Talk:	  ThingFlow,	  a	  DSL	  for	  IoT



Example:	  A	  Temperature	  Controller
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Simple	  ThingFlow	  Example
• Periodically	  sample	  a	  light	  sensor
• Write	  the	  sensed	  value	  to	  a	  file
• Every	  5	  steps,	  send	  the	  moving	  average	  to	  a	  message	  

queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)



“Traditional”	  Event-‐driven	  Style	  (Callbacks)
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. Separate	  connecting	  streams	  with	  handling	  of	  runtime	  
situations:	  distinct	  control	  flows	  for	  normal,	  error,	  and	  
end-‐of-‐stream	  conditions	  not	  required

2. Inversion	  of	  control	  avoided:	  programmer’s	  view	  =	  data	  
flow	  in	  the	  system

3. Scheduling	  is	  provided	  by	  the	  infrastructure



With	  Coroutines
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. No	  more	  callbacks,	  but	  interconnection	  still	  mixed	  with	  
control	  situations

2. Choice	  to	  use	  asynchronous	  calls	  propagates	  through	  
the	  program:	  implementation	  decisions	  have	  global	  
effects



ThingFlow Features

• Streams	  of	  “things”
– Input	  things	  introduce	  streams	  of	  events	  into	  the	  system	  
(e.g.,	  sensors)

– Output	  things	  consume	  streams	  of	  events	  (e.g.,	  actuators)

• Filters	  =	  
Both	  input	  and	  output	  things	  =	  
Stream	  transformers

FilterInput	  
Thing

Output
Thing



ThingFlow Features

• ThingFlow Programs	  =	  Graphs	  of	  stream	  transformers	  
connecting	  input/output	  ports
– Basic	  construct:	  	  A.connect(B,	  inport=outport)

– Syntactic	  sugar:	  default	  ports,	  chaining	  filters,	  combinators
A.map(f)	  – map	  the	  output	  stream	  on	  A	  using	  function	  f
A.transduce(M)	  – transduction	  by	  machine	  M

• Asynchronous,	  push-‐semantics
– explicit	  scheduling

FilterInput	  
Thing

Output
Thing



ThingFlow Controller

Kalman
Filter

Sensor
ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

Filter	  chaining
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robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream
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g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.
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this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream
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Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.
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ThingFlow Implementation

• Python3	  library
– CPython:	  standard	  Python	  implementation
–MicroPython:	  “bare	  metal”	  implementation	  for	  
embedded	  systems

https://github.com/mpi-‐sws-‐rse/thingflow-‐python
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In	  Each	  Step…

Filter

Input	  
Thing

Output
Thing

Filter

Filter

Event	  streams
Infinite-‐state	  system:

1. Events	  are	  infinite-‐state:	  
events	  can	  be	  chosen	  from	  an
infinite	  set	  (e.g.,	  real-‐valued	  
signals)

2. Filters	  are	  infinite-‐state:	  the	  
internal	  state	  of	  filters	  can	  be	  
infinite	  (e.g.,	  a	  Kalman filter)

3. Queues can	  be	  unbounded

4. Probabilistic:	  The	  filter	  
transition	  function	  can	  be	  
probabilistic

Semantics:	  Infinite-‐state	  Markov	  
decision	  process:

-‐ Scheduler	  picks	  policy

-‐ State	  evolves	  probabilistically	  
based	  on	  chosen	  filter

(under	  measureability
assumptions)

Core	  language:	  Prob streams

Reading	  from	  prob streams	  =	  sampling	  
from	  the	  distribution



The	  ThingFlow	  Scheduler
• Responsible	  for	  scheduling	  “things”

– Periodic	  observations	  (sensor	  sampling)
– Non-‐periodic	  events	  (e.g.	  socket	  readiness)
– Inter-‐thing	  events

• Abstraction	  over	  low	  level	  details
– Threading,	  Order	  of	  scheduling

• Different	  implementations
– On	  top	  of	  Python’s	  asyncio scheduler	  for	  Cpython
– Custom,	  power-‐saving	  implementation	  for	  ESP8266

• ThingFlow programs	  must	  be	  explicitly	  scheduled	  to	  
perform	  their	  tasks!



Simple	  ThingFlow	  Example
• Periodically	  sample	  a	  light	  sensor
• Write	  the	  sensed	  value	  to	  a	  file
• Every	  5	  steps,	  send	  the	  moving	  average	  to	  a	  message	  queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor	  =	  LuxSensor()
sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

scheduler	  =	  Scheduler(asyncio.get_event_loop())
scheduler.schedule_periodic(sensor,	  2)
scheduler.run_forever()

Default	  scheduler:	  Push	  an	  event	  entirely	  
through	  the	  graph	  before	  handling	  the	  
next	  input
-‐-‐ Can	  replace	  async calls	  by	  sync	  calls



Solar	  Heater	  Example
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Solar	  Heater	  Example:
Controller	  State	  Machine
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Solar	  Heater	  Example:	  Code

32

Thigh = 110 # Upper threshold (degrees fahrenheit)
Tlow = 90 # Lower threshold
sensor = TempSensor(gpio_port=1)

# The dispatcher converts a sensor reading into
# threshold events
dispatcher = sensor.transduce(RunningAvg(5)) \

.dispatch([(lambda v: v[2]>=Thigh, ’t_high'),
(lambda v: v[2]<=Tlow, ’t_low')])

controller = Controller()
dispatcher.connect(controller, port_mapping=(’t_high’,’t_high'))
dispatcher.connect(controller, port_mapping=(’t_low', ’t_low'))
dispatcher.connect(controller, port_mapping=('default’, 'between'))

actuator = Actuator()
controller.connect(actuator)



Lighting	  Project:	  Motivation

• If	  out	  of	  town	  for	  the	  weekend,	  don’t	  want	  to	  
leave	  the	  house	  dark

• Replay	  lights	  “similar”	  to	  normal	  lighting	  
pattern
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Lighting	  Replay	  Application

Smart	  Lights

Data	  
Capture

Analysis	  and	  
Machine
Learning

Player
Application

Lux	  Sensors

ESP8266	  remote	  
nodes	  +	  
Raspberry	  Pi

Offline	  analysis	  
and	  model	  
learning	  using	  
Jupyter,	  Pandas,	  
HMMlearn

Use	  an	  HMM	  
model	  and	  Phue
to	  control	  Philips	  
Hue	  lights

Captured	  sensor
data HMM	  state	  machines



ESP8266

TSL2591
lux	  sensor
breakout
board

Lithium	  Ion
Polymer
Battery
3.7v	  350mAh

MicroUSB	  to
USB	  cable

Adafruit	  Feather	  HUZZAH
ESP8266	  breakout	  board



ESP8266:	  Wiring	  Diagram
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Raspberry	  Pi
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Raspberry	  Pi:	  Wiring	  Diagram
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Lighting	  Replay	  Application:	  Capture

Lux
Sensor ESP8266
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ESP8266	  Code	  (ThingFlow)

from	  thingflow import	  Scheduler,	  SensorAsOutputThing
from	  tsl2591	  import	  Tsl2591
from	  mqtt_writer import	  MQTTWriter
from	  wifi import	  wifi_connect
import	  os

#	  Params to	  set
WIFI_SID=	  …
WIFI_PW=	  …
SENSOR_ID="front-‐room"
BROKER='192.168.11.153'

wifi_connect(WIFI_SID,	  WIFI_PW)
sensor	  =	  SensorAsOutputThing(Tsl2591())
writer	  =	  MQTTWriter(SENSOR_ID,	  BROKER,	  1883,

'remote-‐sensors')
sensor.connect(writer)

sched =	  Scheduler()
sched.schedule_periodic(sensor,	  SENSOR_ID,	  60)
sched.run_forever()

Sample	  at	  60	  second	  intervals

The	  MQTT	  writer	  is	  connected	  to
the	  lux	  sensor.

See	  https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/capture/esp8266_main.py	  



Raspberry	  Pi	  Code	  (ThingFlow)

Lux
Sensor

MQTT
Adapter

Map
to

UTF8

Parse
JSON

Map
to

events
Dispatch

InfluxDB
(front	  
room)

InfluxDB
(back	  
room)

InfluxDB
(dining	  
room)

https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/capture/sensor_capture.py



Lighting	  Replay	  Application:	  Analysis
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Preprocessing	  the	  Data
(ThingFlow	  running	  in	  a	  Jupyter	  Notebook)

CSV	  File
Reader

Fill in
missing
times

Sliding
Mean

Round
values

Output
Event
Count

Capture
NaN

Indexes

Pandas	  
Writer

(raw	  series)

Pandas	  
Writer

(smoothed	  
series)

reader.fill_in_missing_times()
.passthrough(raw_series_writer)
.transduce(SensorSlidingMeanPassNaNs(5))
.select(round_event_val)
.passthrough(smoothed_series_writer)
.passthrough(capture_nan_indexes)
.output_count()



Data	  Processing:	  Raw	  Data
Front	  room,	  last	  day

Data
gaps



Data	  Processing:	  Smoothed	  Data	  
Front	  room,	  last	  day



Data	  Processing:	  K-‐Means	  Clustering
Front	  room,	  last	  day



Data	  Processing:	  Mapping	  to	  on-‐off	  values
Front	  room,	  last	  day



Hidden	  Markov	  Models	  (HMMs)
• Markov	  process

– State	  machine	  with	  probability	  associated	  
with	  each	  outgoing	  transition

– Probabilities	  determined	  only	  by	  the	  current	  
state,	  not	  on	  history

• Hidden	  Markov	  Model
– The	  states	  are	  not	  visible	  to	  the	  

observer,	  only	  the	  outputs	  (“emissions”).

• In	  a	  machine	  learning	  context:
– (Sequence	  of	  emissions,	  #	  states)	  =>	  inferred	  

HMM

• The	  hmmlearn library	  will	  do	  this	  for	  
us.
– https://github.com/hmmlearn/hmmlearn

Example	  Markov	  process
(from	  Wikipedia)



Slicing	  Data	  into	  Time-‐based	  “Zones”

Sunrise
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before
sunset

Max(sunset+60m,	  9:30	  pm)

0 1 2 3 0



HMM	  Training	  and	  Prediction	  Process

Training
1. Build	  a	  list	  of	  sample	  subsequences	  for	  each	  zone
2. Guess	  a	  number	  of	  states	  (e.g.	  5)
3. For	  each	  zone,	  create	  an	  HMM	  and	  call	  fit() with	  the	  

subsequences
Prediction
For	  each	  zone	  of	  a	  given	  day:

• Run	  the	  associated	  HMM	  to	  generate	  N	  samples	  for	  an	  N	  minute	  
zone	  duration

• Associated	  a	  computed	  timestamp	  with	  each	  sample



HMM	  Predicted	  Data

Front	  room,	  one	  week	  predicted	  data

Front	  room,	  one	  day	  predicted	  data



Lighting	  Replay	  Application:	  Replay
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Logic	  of	  the	  Replay	  Script

• Use	  phue library	  to	  control	  lights
• Reuse	  time	  zone	  logic	  and	  HMMs	  from	  analysis
• Pseudo-‐code:

Initial	  testing	  of	  lights
while	  True:

compute	  predicted	  values	  for	  rest	  of	  day
organize	  predictions	  into	  a	  time-‐sorted	  list	  of	  on/off	  events
for	  each	  event:

sleep	  until	  event	  time
send	  control	  message	  for	  event

wait	  until	  next	  day

https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/player/lux_player.py



ThingFlow:	  Analysis
• Bad	  news:	  Communicating	  finite-‐state	  machines	  +	  FIFO	  
queues	  =	  everything	  is	  undecidable!

• Decidable	  verification	  in	  special	  cases:	  finite-‐state	  
events	  &	  filters,	  ordering	  of	  messages	  ignored

• Analyzing	  a	  filter:	  Abstraction	  &	  approximation	  of	  
infinite-‐state	  probabilistic	  processes
– algorithms	  with	  guaranteed	  error	  bounds

• Open:	  Tools	  and	  analyses	  for	  Thingflow programs
– Asynchrony,	  Hybrid	  systems,	  Uncertainty,	  Distribution



Analysis	  of	  ThingFlow

Two	  example	  analyses	  for	  subcases:

1. Analyzing	  event	  flows:	  Provenance	  Analysis
[Joint	  work	  with	  Roland	  Meyer	  &	  Zilong Wang]

2. Analyzing	  a	  filter:	  Abstracting	  infinite-‐state	  
Markov	  processes	  

[Joint	  work	  with	  Sadegh Soudjani and	  Alessandro	  
Abate]



Provenance

Information	  about	  the	  source	  and	  access	  history	  
of	  an	  object
“All	  inputs	  to	  controller	  are	  sanitized”

BA C
req

req



Provenance	  for	  ThingFlow

• Associate	  principals	  with	  filters

• Provenance	  of	  a	  message	  =	  
Principals	  who	  have	  sent	  the	  message	  
chronologically

• Provenance	  domain	  =	  
Strings	  over	  principal	  names



Provenance	  Verification	  Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-‐state!

Example: All inputs to controller have passed through a
sanitizer and then a state estimator



Provenance	  Verification	  Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-‐state!

Basic abstraction: For each stream, each kind of event,
count how many events are currently in the stream



In	  Each	  Step…

Filter

Input	  
Thing

Output
Thing

Filter

Filter

Event	  streams

Finite	  state

Finitely	  many	  possibilities1 orange,
4	  purple

Counting	  abstraction



Unbounded	  Events:	  Petri	  Net

• Finite	  set	  of	  places
• Finite	  set	  of	  transitions
• Places	  marked	  with	  tokens

• State:	  Marking	  

• Step:	  consume	  tokens	  from	  
sources,	  put	  tokens	  into	  
targets	  of	  a	  transition

• Defines	  an	  infinite	  state	  
system



The	  Benefits	  of	  Petrification

Petri	  nets	  have	  nice	  decidable	  properties:
Coverability problem	  (is	  some	  place	  
markable?)	  is	  decidable

Theorem	  [Rackoff,Lipton]	  The	  coverability
problem	  for	  Petri	  nets	  is	  EXPSPACE-‐complete.



From	  ThingFlow to	  Nets

• A	  place	  for	  each	  filter	  state

• A	  place	  for	  each	  queue	  and	  each	  event	  type
– Count	  how	  many	  events	  of	  each	  type	  in	  a	  queue

With	  provenances,	  we	  do	  not	  get	  a	  Petri	  net:
Unboundedly	  many	  provenances	  ➔

unboundedly	  many	  places



Unbounded	  Provenances:	  Automata

• Define	  equivalence	  classes	  w.r.t.	  the	  states	  of	  
DFA	  for	  the	  regular	  set	  of	  provenances.

• Define	  a	  counter	  for	  each	  queue,	  event,	  and	  
state	  of	  the	  spec

The	  validity	  of	  the	  provenance	  property	  
depends	  on	  states	  of	  the	  spec	  automaton,	  not	  
concrete	  provenances.



Program	  +	  Provenance	  DFA➔poly Petri	  net	  

– Control	  flow	  can	  be	  modeled	  by	  Petri	  net
– Each	  counter	  is	  a	  place	  in	  the	  Petri	  net

Provenance	  verification	  problem	  =	  
Coverability problem	  of	  Petri	  nets

Reduction



Provenance	  verification	  problem	  for	  
finite-‐state	  ThingFlow programs	  (when	  
ordering	  is	  ignored)	  is	  EXPSPACE-‐
complete.

Main	  Theorem



Linear	  Temporal	  Logic

• Provenance	  verification	  =	  Invariants
• Provenance	  linear	  temporal	  logic:

“Whenever	  event	  in	  x	  has	  provenance	  R,	  eventually	  
an	  event	  in	  y	  has	  provenance	  S”

Theorem:	  ProvLTL decidable	  for	  finite-‐state	  
Thingflow programs	  (when	  ordering	  is	  
ignored)



Analysis	  of	  ThingFlow

Two	  examples	  of	  decidability	  in	  special	  cases:

1. Provenance	  Analysis
[Joint	  work	  with	  Roland	  Meyer	  &	  Zilong Wang]

2. Analyzing	  a	  single	  filter:	  Abstracting	  infinite-‐
state	  Markov	  processes	  

[Joint	  work	  with	  Sadegh Soudjani and	  Alessandro	  
Abate]



• State	  space	  S
• Transition	  kernel	  T(ds’	  |	  s)	  =	  	  t(s’	  |	  s)	  ds’

• N-‐step	  safety	  problem:	  Given	  s0,	  T,	  and	  a	  set	  
A,	  find	  the	  probability	  that	  the	  system	  stays	  in	  
A up	  to	  N steps
– Can	  formulate	  as	  a	  Bellman	  iteration	  (but	  without	  
any	  closed	  form)

Discrete-‐Time	  Markov	  Process

T (C | s) = Pr [s0 2 C | s]



Markov	  Chain	  Abstraction

• Finite-‐state	  Markov	  chain	  =	  Representatives	  
from	  a	  partition	  of	  the	  infinite-‐state	  space

• Transitions:	  

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A
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Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}
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P (vi, vj) =

Z

Aj

t(s0 | vi)ds0



Main	  Result

If	  t(.	  |	  s)	  is	  Lipschitz	  continuous	  with	  constant	  h,	  
one	  can	  bound	  the	  probability	  of	  error	  between	  
the	  original	  model	  and	  the	  finite-‐state	  
abstraction:

|ps0(A)� pv0(A�)|  NLh�

Prob of	  staying	  
in	  A for	  N steps

Prob of	  staying	  
in	  abstraction	  
of	  A for	  N steps
in	  abstraction

N =	  Number	  of	  steps
L	  =	  Volume	  of	  A
h =	  Lipschitz	  const
δ =	  Diameter	  of	  
abstraction



Infinite	  to	  Finite	  MDPs

• Bounds	  are	  very weak!
– Compared	  to	  Monte	  Carlo	  simulation

• Open:	  Better	  bounds?	  

• Open:	  Verification	  for	  MDP	  +	  asynchronous	  
concurrency?



Analysis	  of	  ThingFlow

Two	  examples	  of	  decidability	  in	  special	  cases:

1. Provenance	  Analysis
[Joint	  work	  with	  Roland	  Meyer	  &	  Zilong Wang]

2. Analyzing	  a	  single	  filter:	  Abstracting	  infinite-‐state	  
Markov	  processes	  

[Joint	  work	  with	  Sadegh Soudjani and	  Alessandro	  
Abate]

Open:	  Analysis	  of	  a	  Thingflow program	  
(combining	  asynchrony,	  filters,	  and	  probabilities)



Other	  Open	  Problems

1. Parameterized	  reasoning

2. Real-‐time	  control

3. Fault	  tolerance	  and	  distribution

4. Deployment

5. Security,	  privacy,	  accountability



Conclusion
• ThingFlow =  DSL  for  stream-processing  
applications  for  IoT systems
• Streams  &  stream  transformations
• Filters  &  filter  composition
• Uncertainty  &  infinite-state
• Asynchrony  &  explicit  scheduling

• Many  verification/analysis/tool  aspects  
are  open!



Thank	  You
http://www.mpi-‐sws.org/~rupak

ThingFlow:
https://github.com/mpi-‐sws-‐rse/thingflow-‐python

ThingFlow Examples:
https://github.com/mpi-‐sws-‐rse/thingflow-‐examples


