
Programming	 IoT

Rupak	 Majumdar

Max	 Planck	 Institute	 for	 Software	 Systems	
Kaiserslautern,	 Germany

(Joint	 work	 with	 Jeff	 Fischer)

Source:	 Gartner,	 IDC

Cost	 of	 bandwidth

40	 X	
Cost	 of	 processing

60	 X	
Cost	 of	 sensors

2	 X	

Edge	 sensors

Se
ns
e

Connect

Micro
controller

Gateway	 device

Data	 storage

Analytics

Examples:	 Consumer	 analytics,	 real-‐time	 sensing	 and	 monitoring

Information and	 Analytics

1. Consumer	 analytics

Monitoring	 and	 profiling	 user	
behavior	 on	 the	 Internet
Learning user	 models	 for	
targeted	 ads

Examples:
Clickthrough analysis
Location-‐aware	
recommendations

2.	 Sensor-‐driven decision	
making

Analytics	 for	 business	
intelligence

Examples:	
Smart	 factories
Production	 trends
Computation	 &	 storage	 trends

3.	 Real-‐time	 monitoring

Monitoring	 the	 behaviors of	
persons,	 things,	 or	 data	
through	 space	 and	 time

Examples:	
Inventory	 and	 supply	 chain	
management

Security	 analytics

Edge	 sensors

Se
ns
e

Connect

Micro
controller

Gateway	 device

Data	 storage

Analytics

Edge	 sensors

Se
ns
e

Connect

Micro
controller

Gateway	 device

Data	 storage

Analytics

Edge	 actuators

Ac
tu
at
e

Connect

Micro
controller

Examples:	 Process	 automation,	 Closed	 loop	 decision	 making,
Complex	 autonomous	 processes

Automation	 and	 control
1. Process	 automation

Controlling	 the	 behaviors of	
persons,	 things,	 or	 data	
through	 space	 and	 time

Examples:	
Software-‐based process	 control
Smart	 factories

2.	 Closed-‐loop	 decision	 making

Feedback	 control	 of	
consumption	 for	 resources

Examples:
Networked	 smart	 energy	
management
Smart	 buildings
Health	 monitoring

3.	 Complex	 autonomous	
systems

Automatic	 control	 in	 open	
and	 uncertain	 environments

Examples:
Autonomous	 cars	 &	 traffic	
networks
Robotic	 swarms,	 disaster	
management

Edge	 sensors
&	 actuators

Se
ns
e

Connect

Micro
controller

Gateway	 device

Data	 storage

Analytics

This	 Talk:	
Programming	 abstractions,	 Models,	

and	 Analyses	 for	 developing	
Large-‐scale	 IoT Systems

Part	 I:	 A	 language	 abstraction
Part	 II:	 Some	 verification	 problems

Cyber-‐physical-‐social	
Level

??? ???

Enterprise Level Software	 services:
Provisioning,	 scheduling,	
replication

Distributed	 systems,	
Datacenters

System	 Level
(Multiple agents)

Discrete systems
Co-‐ordination,	 Communication,	
Learning

Databases	 &	 Querying,
Machine	 learning

Component	 Level
(Single	 control	 loop)

Hybrid	 systems
Ensure	 temporal	 behaviors

Control loops:	
sense/compute/actuate

Dynamics	 Level Modeling the	 world:	 ODEs,
Uncertainty

“Classical”	 control	 and	
signal	 processing:	 AD	
converters,	 PID controllers

Programming	 Environment

1. Streams and	 stateful transformations	 of	
streams

2. Asynchronous concurrency,	 real-‐time
3. Uncertainty as	 “first-‐class”	 object
4. Heterogeneous computing	 platforms
5. Distributed infrastructure

Domain-‐Specific	 Languages

• Control:	 Simulink/Stateflow
• Synchronous	 hardware:	 Esterel/Lustre
• Systems	 &	 Networking:	 Click
• Data	 processing:	 Apache	 Spark	 Streaming

• This	 Talk:	 ThingFlow,	 a	 DSL	 for	 IoT

Example:	 A	 Temperature	 Controller

Sensor Control Actuator
x u

Physical	 System

Gaps

Noise

Sensor Moving
avg

Kalman
filter

Blocking?
New	 thread!

Multiple	
sensors?	
Aggregate!

Model	 missing?	
Learn	 params! .	 .	 .

Le
ar
n

Co
nt
ro
l

Interface	 w/
Cloud	

infrastructure

Simple	 ThingFlow	 Example
• Periodically	 sample	 a	 light	 sensor
• Write	 the	 sensed	 value	 to	 a	 file
• Every	 5	 steps,	 send	 the	 moving	 average	 to	 a	 message	

queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

“Traditional”	 Event-‐driven	 Style	 (Callbacks)
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. Separate	 connecting	 streams	 with	 handling	 of	 runtime	
situations:	 distinct	 control	 flows	 for	 normal,	 error,	 and	
end-‐of-‐stream	 conditions	 not	 required

2. Inversion	 of	 control	 avoided:	 programmer’s	 view	 =	 data	
flow	 in	 the	 system

3. Scheduling	 is	 provided	 by	 the	 infrastructure

With	 Coroutines
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. No	 more	 callbacks,	 but	 interconnection	 still	 mixed	 with	
control	 situations

2. Choice	 to	 use	 asynchronous	 calls	 propagates	 through	
the	 program:	 implementation	 decisions	 have	 global	
effects

ThingFlow Features

• Streams	 of	 “things”
– Input	 things	 introduce	 streams	 of	 events	 into	 the	 system	
(e.g.,	 sensors)

– Output	 things	 consume	 streams	 of	 events	 (e.g.,	 actuators)

• Filters	 =	
Both	 input	 and	 output	 things	 =	
Stream	 transformers

FilterInput	
Thing

Output
Thing

ThingFlow Features

• ThingFlow Programs	 =	 Graphs	 of	 stream	 transformers	
connecting	 input/output	 ports
– Basic	 construct:	 	 A.connect(B,	 inport=outport)

– Syntactic	 sugar:	 default	 ports,	 chaining	 filters,	 combinators
A.map(f)	 – map	 the	 output	 stream	 on	 A	 using	 function	 f
A.transduce(M)	 – transduction	 by	 machine	 M

• Asynchronous,	 push-‐semantics
– explicit	 scheduling

FilterInput	
Thing

Output
Thing

ThingFlow Controller

Kalman
Filter

Sensor
ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

Filter	 chaining

ThingFlow Controller

Particle	
Filter

Gyro

ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

First&Es(mator&
(Kalman&Filter)&

Second&Es(mator&
(Par(cle&Filter)&

Moving&body&
ω(k),&q(k)&

Gyro& Camera&

Delay&

x̂1(k)

P1(k)

x̂1(k � 1)

P1(k � 1)
x̂2(k)

P2(k)

z1(k) z2(k)

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

Kalman
Filter

Camera

ThingFlow Controller

Particle	
Filter

Gyro

ActuatorControl

Kalman
Filter

Camera

c = Camera()

c.connect(mqtt writer)

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

First&Es(mator&
(Kalman&Filter)&

Second&Es(mator&
(Par(cle&Filter)&

Moving&body&
ω(k),&q(k)&

Gyro& Camera&

Delay&

x̂1(k)

P1(k)

x̂1(k � 1)

P1(k � 1)
x̂2(k)

P2(k)

z1(k) z2(k)

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

mqtt reader(...)

ThingFlow Implementation

• Python3	 library
– CPython:	 standard	 Python	 implementation
–MicroPython:	 “bare	 metal”	 implementation	 for	
embedded	 systems

https://github.com/mpi-‐sws-‐rse/thingflow-‐python

Semantics	 =	 Comm.	 State	 Machines

Filter

Input	
Thing

Output
Thing

Filter

Filter

Event	 streams

In	 Each	 Step…

Filter

Input	
Thing

Output
Thing

Filter

Filter

Event	 streams

In	 Each	 Step…

Filter

Input	
Thing

Output
Thing

Filter

Filter

Event	 streams

In	 Each	 Step…

Filter

Input	
Thing

Output
Thing

Filter

Filter

Event	 streams
Infinite-‐state	 system:

1. Events	 are	 infinite-‐state:	
events	 can	 be	 chosen	 from	 an
infinite	 set	 (e.g.,	 real-‐valued	
signals)

2. Filters	 are	 infinite-‐state:	 the	
internal	 state	 of	 filters	 can	 be	
infinite	 (e.g.,	 a	 Kalman filter)

3. Queues can	 be	 unbounded

4. Probabilistic:	 The	 filter	
transition	 function	 can	 be	
probabilistic

Semantics:	 Infinite-‐state	 Markov	
decision	 process:

-‐ Scheduler	 picks	 policy

-‐ State	 evolves	 probabilistically	
based	 on	 chosen	 filter

(under	 measureability
assumptions)

Core	 language:	 Prob streams

Reading	 from	 prob streams	 =	 sampling	
from	 the	 distribution

The	 ThingFlow	 Scheduler
• Responsible	 for	 scheduling	 “things”

– Periodic	 observations	 (sensor	 sampling)
– Non-‐periodic	 events	 (e.g.	 socket	 readiness)
– Inter-‐thing	 events

• Abstraction	 over	 low	 level	 details
– Threading,	 Order	 of	 scheduling

• Different	 implementations
– On	 top	 of	 Python’s	 asyncio scheduler	 for	 Cpython
– Custom,	 power-‐saving	 implementation	 for	 ESP8266

• ThingFlow programs	 must	 be	 explicitly	 scheduled	 to	
perform	 their	 tasks!

Simple	 ThingFlow	 Example
• Periodically	 sample	 a	 light	 sensor
• Write	 the	 sensed	 value	 to	 a	 file
• Every	 5	 steps,	 send	 the	 moving	 average	 to	 a	 message	 queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor	 =	 LuxSensor()
sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

scheduler	 =	 Scheduler(asyncio.get_event_loop())
scheduler.schedule_periodic(sensor,	 2)
scheduler.run_forever()

Default	 scheduler:	 Push	 an	 event	 entirely	
through	 the	 graph	 before	 handling	 the	
next	 input
-‐-‐ Can	 replace	 async calls	 by	 sync	 calls

Solar	 Heater	 Example

30

Cooler
water

Hot
water

Bypass
valve

Solar	 water	 heater

Water
temp
sensor

House

Pool
Control
State	

Machine

Actuator

Dispatc
h

Low	
Pass
Filter

Default

Between

Thigh

Tlow

Solar	 Heater	 Example:
Controller	 State	 Machine

31

NormalInitial Too
Hot

Between	 /	 OFF

TLOW /	 OFF

THIGH /	 ON

TLOW /	 Ø

THIGH /	 Ø

THIGH /	 ON

TLOW /	 OFF

Solar	 Heater	 Example:	 Code

32

Thigh = 110 # Upper threshold (degrees fahrenheit)
Tlow = 90 # Lower threshold
sensor = TempSensor(gpio_port=1)

The dispatcher converts a sensor reading into
threshold events
dispatcher = sensor.transduce(RunningAvg(5)) \

.dispatch([(lambda v: v[2]>=Thigh, ’t_high'),
(lambda v: v[2]<=Tlow, ’t_low')])

controller = Controller()
dispatcher.connect(controller, port_mapping=(’t_high’,’t_high'))
dispatcher.connect(controller, port_mapping=(’t_low', ’t_low'))
dispatcher.connect(controller, port_mapping=('default’, 'between'))

actuator = Actuator()
controller.connect(actuator)

Lighting	 Project:	 Motivation

• If	 out	 of	 town	 for	 the	 weekend,	 don’t	 want	 to	
leave	 the	 house	 dark

• Replay	 lights	 “similar”	 to	 normal	 lighting	
pattern

Lighting	 Replay	 Application

Smart	 Lights

Data	
Capture

Analysis	 and	
Machine
Learning

Player
Application

Lux	 Sensors

Lighting	 Replay	 Application

Smart	 Lights

Data	
Capture

Analysis	 and	
Machine
Learning

Player
Application

Lux	 Sensors

ESP8266	 remote	
nodes	 +	
Raspberry	 Pi

Offline	 analysis	
and	 model	
learning	 using	
Jupyter,	 Pandas,	
HMMlearn

Use	 an	 HMM	
model	 and	 Phue
to	 control	 Philips	
Hue	 lights

Captured	 sensor
data HMM	 state	 machines

ESP8266

TSL2591
lux	 sensor
breakout
board

Lithium	 Ion
Polymer
Battery
3.7v	 350mAh

MicroUSB	 to
USB	 cable

Adafruit	 Feather	 HUZZAH
ESP8266	 breakout	 board

ESP8266:	 Wiring	 Diagram

SDA

SCL

GND

3V

Raspberry	 Pi

Raspberry	 Pi	 2

Resistor

LED
TSL2591
lux	 sensor
breakout
board

Raspberry	 Pi:	 Wiring	 Diagram

Resistor
LED

Anode
(long	 lead)

Cathode
(short	 lead)

10k

GND

3.3V

SDA
SCL

GPIO	 0

Lighting	 Replay	 Application:	 Capture

Lux
Sensor ESP8266

Front	 Bedroom	 Sensor	 Node

Lux
Sensor ESP8266

Back	 Bedroom	 Sensor	 Node

Raspberry	 Pi
(Dining	 Room)

MQTT
Data	

Capture	
App

Lux
Sensor

Influx
DB

ESP8266	 Code	 (ThingFlow)

from	 thingflow import	 Scheduler,	 SensorAsOutputThing
from	 tsl2591	 import	 Tsl2591
from	 mqtt_writer import	 MQTTWriter
from	 wifi import	 wifi_connect
import	 os

#	 Params to	 set
WIFI_SID=	 …
WIFI_PW=	 …
SENSOR_ID="front-‐room"
BROKER='192.168.11.153'

wifi_connect(WIFI_SID,	 WIFI_PW)
sensor	 =	 SensorAsOutputThing(Tsl2591())
writer	 =	 MQTTWriter(SENSOR_ID,	 BROKER,	 1883,

'remote-‐sensors')
sensor.connect(writer)

sched =	 Scheduler()
sched.schedule_periodic(sensor,	 SENSOR_ID,	 60)
sched.run_forever()

Sample	 at	 60	 second	 intervals

The	 MQTT	 writer	 is	 connected	 to
the	 lux	 sensor.

See	 https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/capture/esp8266_main.py	

Raspberry	 Pi	 Code	 (ThingFlow)

Lux
Sensor

MQTT
Adapter

Map
to

UTF8

Parse
JSON

Map
to

events
Dispatch

InfluxDB
(front	
room)

InfluxDB
(back	
room)

InfluxDB
(dining	
room)

https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/capture/sensor_capture.py

Lighting	 Replay	 Application:	 Analysis

Raspberry	 Pi
(Dining	 Room)

Flat
Files

HMM
definitions

Laptop

Jupyter	 Notebook

file
copy

Preprocessing	 the	 Data
(ThingFlow	 running	 in	 a	 Jupyter	 Notebook)

CSV	 File
Reader

Fill in
missing
times

Sliding
Mean

Round
values

Output
Event
Count

Capture
NaN

Indexes

Pandas	
Writer

(raw	 series)

Pandas	
Writer

(smoothed	
series)

reader.fill_in_missing_times()
.passthrough(raw_series_writer)
.transduce(SensorSlidingMeanPassNaNs(5))
.select(round_event_val)
.passthrough(smoothed_series_writer)
.passthrough(capture_nan_indexes)
.output_count()

Data	 Processing:	 Raw	 Data
Front	 room,	 last	 day

Data
gaps

Data	 Processing:	 Smoothed	 Data	
Front	 room,	 last	 day

Data	 Processing:	 K-‐Means	 Clustering
Front	 room,	 last	 day

Data	 Processing:	 Mapping	 to	 on-‐off	 values
Front	 room,	 last	 day

Hidden	 Markov	 Models	 (HMMs)
• Markov	 process

– State	 machine	 with	 probability	 associated	
with	 each	 outgoing	 transition

– Probabilities	 determined	 only	 by	 the	 current	
state,	 not	 on	 history

• Hidden	 Markov	 Model
– The	 states	 are	 not	 visible	 to	 the	

observer,	 only	 the	 outputs	 (“emissions”).

• In	 a	 machine	 learning	 context:
– (Sequence	 of	 emissions,	 #	 states)	 =>	 inferred	

HMM

• The	 hmmlearn library	 will	 do	 this	 for	
us.
– https://github.com/hmmlearn/hmmlearn

Example	 Markov	 process
(from	 Wikipedia)

Slicing	 Data	 into	 Time-‐based	 “Zones”

Sunrise

30	 Minutes
before
sunset

Max(sunset+60m,	 9:30	 pm)

0 1 2 3 0

HMM	 Training	 and	 Prediction	 Process

Training
1. Build	 a	 list	 of	 sample	 subsequences	 for	 each	 zone
2. Guess	 a	 number	 of	 states	 (e.g.	 5)
3. For	 each	 zone,	 create	 an	 HMM	 and	 call	 fit() with	 the	

subsequences
Prediction
For	 each	 zone	 of	 a	 given	 day:

• Run	 the	 associated	 HMM	 to	 generate	 N	 samples	 for	 an	 N	 minute	
zone	 duration

• Associated	 a	 computed	 timestamp	 with	 each	 sample

HMM	 Predicted	 Data

Front	 room,	 one	 week	 predicted	 data

Front	 room,	 one	 day	 predicted	 data

Lighting	 Replay	 Application:	 Replay

Front	 Room
Smart	 Light

Raspberry	 Pi
(Dining	 Room)

HMM
definitions

Player
Script

Back	 Room
Smart	 Light

Philips
Hue
Bridge

WiFi
Router
and
Switch

ZigBee
HTTP

Logic	 of	 the	 Replay	 Script

• Use	 phue library	 to	 control	 lights
• Reuse	 time	 zone	 logic	 and	 HMMs	 from	 analysis
• Pseudo-‐code:

Initial	 testing	 of	 lights
while	 True:

compute	 predicted	 values	 for	 rest	 of	 day
organize	 predictions	 into	 a	 time-‐sorted	 list	 of	 on/off	 events
for	 each	 event:

sleep	 until	 event	 time
send	 control	 message	 for	 event

wait	 until	 next	 day

https://github.com/mpi-‐sws-‐rse/thingflow-‐examples/blob/master/lighting_replay_app/player/lux_player.py

ThingFlow:	 Analysis
• Bad	 news:	 Communicating	 finite-‐state	 machines	 +	 FIFO	
queues	 =	 everything	 is	 undecidable!

• Decidable	 verification	 in	 special	 cases:	 finite-‐state	
events	 &	 filters,	 ordering	 of	 messages	 ignored

• Analyzing	 a	 filter:	 Abstraction	 &	 approximation	 of	
infinite-‐state	 probabilistic	 processes
– algorithms	 with	 guaranteed	 error	 bounds

• Open:	 Tools	 and	 analyses	 for	 Thingflow programs
– Asynchrony,	 Hybrid	 systems,	 Uncertainty,	 Distribution

Analysis	 of	 ThingFlow

Two	 example	 analyses	 for	 subcases:

1. Analyzing	 event	 flows:	 Provenance	 Analysis
[Joint	 work	 with	 Roland	 Meyer	 &	 Zilong Wang]

2. Analyzing	 a	 filter:	 Abstracting	 infinite-‐state	
Markov	 processes	

[Joint	 work	 with	 Sadegh Soudjani and	 Alessandro	
Abate]

Provenance

Information	 about	 the	 source	 and	 access	 history	
of	 an	 object
“All	 inputs	 to	 controller	 are	 sanitized”

BA C
req

req

Provenance	 for	 ThingFlow

• Associate	 principals	 with	 filters

• Provenance	 of	 a	 message	 =	
Principals	 who	 have	 sent	 the	 message	
chronologically

• Provenance	 domain	 =	
Strings	 over	 principal	 names

Provenance	 Verification	 Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-‐state!

Example: All inputs to controller have passed through a
sanitizer and then a state estimator

Provenance	 Verification	 Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-‐state!

Basic abstraction: For each stream, each kind of event,
count how many events are currently in the stream

In	 Each	 Step…

Filter

Input	
Thing

Output
Thing

Filter

Filter

Event	 streams

Finite	 state

Finitely	 many	 possibilities1 orange,
4	 purple

Counting	 abstraction

Unbounded	 Events:	 Petri	 Net

• Finite	 set	 of	 places
• Finite	 set	 of	 transitions
• Places	 marked	 with	 tokens

• State:	 Marking	

• Step:	 consume	 tokens	 from	
sources,	 put	 tokens	 into	
targets	 of	 a	 transition

• Defines	 an	 infinite	 state	
system

The	 Benefits	 of	 Petrification

Petri	 nets	 have	 nice	 decidable	 properties:
Coverability problem	 (is	 some	 place	
markable?)	 is	 decidable

Theorem	 [Rackoff,Lipton]	 The	 coverability
problem	 for	 Petri	 nets	 is	 EXPSPACE-‐complete.

From	 ThingFlow to	 Nets

• A	 place	 for	 each	 filter	 state

• A	 place	 for	 each	 queue	 and	 each	 event	 type
– Count	 how	 many	 events	 of	 each	 type	 in	 a	 queue

With	 provenances,	 we	 do	 not	 get	 a	 Petri	 net:
Unboundedly	 many	 provenances	 ➔

unboundedly	 many	 places

Unbounded	 Provenances:	 Automata

• Define	 equivalence	 classes	 w.r.t.	 the	 states	 of	
DFA	 for	 the	 regular	 set	 of	 provenances.

• Define	 a	 counter	 for	 each	 queue,	 event,	 and	
state	 of	 the	 spec

The	 validity	 of	 the	 provenance	 property	
depends	 on	 states	 of	 the	 spec	 automaton,	 not	
concrete	 provenances.

Program	 +	 Provenance	 DFA➔poly Petri	 net	

– Control	 flow	 can	 be	 modeled	 by	 Petri	 net
– Each	 counter	 is	 a	 place	 in	 the	 Petri	 net

Provenance	 verification	 problem	 =	
Coverability problem	 of	 Petri	 nets

Reduction

Provenance	 verification	 problem	 for	
finite-‐state	 ThingFlow programs	 (when	
ordering	 is	 ignored)	 is	 EXPSPACE-‐
complete.

Main	 Theorem

Linear	 Temporal	 Logic

• Provenance	 verification	 =	 Invariants
• Provenance	 linear	 temporal	 logic:

“Whenever	 event	 in	 x	 has	 provenance	 R,	 eventually	
an	 event	 in	 y	 has	 provenance	 S”

Theorem:	 ProvLTL decidable	 for	 finite-‐state	
Thingflow programs	 (when	 ordering	 is	
ignored)

Analysis	 of	 ThingFlow

Two	 examples	 of	 decidability	 in	 special	 cases:

1. Provenance	 Analysis
[Joint	 work	 with	 Roland	 Meyer	 &	 Zilong Wang]

2. Analyzing	 a	 single	 filter:	 Abstracting	 infinite-‐
state	 Markov	 processes	

[Joint	 work	 with	 Sadegh Soudjani and	 Alessandro	
Abate]

• State	 space	 S
• Transition	 kernel	 T(ds’	 |	 s)	 =	 	 t(s’	 |	 s)	 ds’

• N-‐step	 safety	 problem:	 Given	 s0,	 T,	 and	 a	 set	
A,	 find	 the	 probability	 that	 the	 system	 stays	 in	
A up	 to	 N steps
– Can	 formulate	 as	 a	 Bellman	 iteration	 (but	 without	
any	 closed	 form)

Discrete-‐Time	 Markov	 Process

T (C | s) = Pr [s0 2 C | s]

Markov	 Chain	 Abstraction

• Finite-‐state	 Markov	 chain	 =	 Representatives	
from	 a	 partition	 of	 the	 infinite-‐state	 space

• Transitions:	

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A

S. Soudjani, Oxford DBNs as Formal Abstractions of Structured Stochastic Processes slide 11 /24

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A
A9

A7

A2

A1 A8

A3

A6

A5

A4

v8

v5

φ

v7

S. Soudjani, Oxford DBNs as Formal Abstractions of Structured Stochastic Processes slide 11 /24

P (vi, vj) =

Z

Aj

t(s0 | vi)ds0

Main	 Result

If	 t(.	 |	 s)	 is	 Lipschitz	 continuous	 with	 constant	 h,	
one	 can	 bound	 the	 probability	 of	 error	 between	
the	 original	 model	 and	 the	 finite-‐state	
abstraction:

|ps0(A)� pv0(A�)| NLh�

Prob of	 staying	
in	 A for	 N steps

Prob of	 staying	
in	 abstraction	
of	 A for	 N steps
in	 abstraction

N =	 Number	 of	 steps
L	 =	 Volume	 of	 A
h =	 Lipschitz	 const
δ =	 Diameter	 of	
abstraction

Infinite	 to	 Finite	 MDPs

• Bounds	 are	 very weak!
– Compared	 to	 Monte	 Carlo	 simulation

• Open:	 Better	 bounds?	

• Open:	 Verification	 for	 MDP	 +	 asynchronous	
concurrency?

Analysis	 of	 ThingFlow

Two	 examples	 of	 decidability	 in	 special	 cases:

1. Provenance	 Analysis
[Joint	 work	 with	 Roland	 Meyer	 &	 Zilong Wang]

2. Analyzing	 a	 single	 filter:	 Abstracting	 infinite-‐state	
Markov	 processes	

[Joint	 work	 with	 Sadegh Soudjani and	 Alessandro	
Abate]

Open:	 Analysis	 of	 a	 Thingflow program	
(combining	 asynchrony,	 filters,	 and	 probabilities)

Other	 Open	 Problems

1. Parameterized	 reasoning

2. Real-‐time	 control

3. Fault	 tolerance	 and	 distribution

4. Deployment

5. Security,	 privacy,	 accountability

Conclusion
• ThingFlow = DSL for stream-processing
applications for IoT systems
• Streams & stream transformations
• Filters & filter composition
• Uncertainty & infinite-state
• Asynchrony & explicit scheduling

• Many verification/analysis/tool aspects
are open!

Thank	 You
http://www.mpi-‐sws.org/~rupak

ThingFlow:
https://github.com/mpi-‐sws-‐rse/thingflow-‐python

ThingFlow Examples:
https://github.com/mpi-‐sws-‐rse/thingflow-‐examples

