
A One-Pass Tree-Shaped Tableau for LTL+Past

Nicola Gigante
University of Udine, Italy

joint work with Angelo Montanari
University of Udine, Italy

and Mark Reynolds
University of Western Australia, Australia

LPAR-21, May 8-12 2017, Maun, Botswana

Introduction

Linear Temporal Logic

Linear Temporal Logic (LTL) is a propositional modal logic
interpreted over infinite, discrete, linear orders.

Xα α will be true at the next state.
α U β β will eventually be true, and

α always holds until then.
Fβ ≡ ⊤ U β β will eventually be true.
Gβ ≡ ¬ F¬β β will always be true.

1

Augmenting LTL with past operators

LTL can be augmented with past modalities:

Yα α was true at the previous state.
α S β β has been true in the past, and

α always held since then.
Pβ ≡ ⊤ S β β has been true in the past.
Hβ ≡ ¬P¬β historically, β has always been true.

Why? Past operators do not add expressive power to LTL, but
they do allow to express many formulae more succinctly.

Note: formulae are satisfied if they hold at the first state.

2

LTL Satisfiability

LTL satisfiability is the problem of checking whether there
exists a model that satisfies a given LTL formula.

• PSPACE-complete problem.
• Algorithmic solutions:

• (Büchi) Automata-based
• Tableau methods
• Temporal resolution
• Reduction to model checking
• …

The satisfiability problem for LTL+P is still PSPACE-complete.

3

Why LTL satisfiability?

LTL is usually used to write specification in model checking,
but other applications exist for the satisfiability problem:

• sanity checking of specifications
• temporal reasoning in AI
• …

4

Tableau methods for LTL satisfiability

Tableaux were among the first methods proposed to solve the
LTL satisfiability problem:

• Early tableau methods were graph-shaped and
multiple-pass (Wolper 1984).

• Subsequently, Schwendimann [Sch98] introduced a
single-pass tableau with a tree-like shape (still a DAG).

5

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability
was recently proposed.

Reynolds 2016
M. Reynolds. “A New Rule for LTL Tableaux.” In: Proc. of the
7th International Symposium on Games, Automata, Logics and
Formal Verification. GandALF 2016

6

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability
was recently proposed, and implemented in a tool.

Bertello et al. 2016
M. Bertello, N. Gigante, A. Montanari, and M. Reynolds.
“Leviathan: A New LTL Satisfiability Checking Tool Based on a
One-Pass Tree-Shaped Tableau.” In: Proc. of the 25th

International Joint Conference on Artificial Intelligence.
IJCAI 2016

http://www.github.com/corralx/leviathan

6

http://www.github.com/corralx/leviathan

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability
was recently proposed, and implemented in a tool.

• Purely tree-shaped rule-based search procedure.
• A single pass is sufficient to determine the acceptance of
rejection of a given branch.

• Very simple structure, combining the simplicity of
declarative tableaux with the efficiency of one-pass
systems.

• Easy to extend!
• Easy to parallelize (work in progress)!

6

A One-Pass Tree-Shaped Tableau for LTL+P

In this paper we extended the method to support LTL+P:

• The extension can be done in a very modular way:
• it respects the same one-pass tree-shaped structure.
• new rules are added to the system, with old rules left
completely unchanged.

• First evidence of how this tableau can be easy to extend
to different logics.

7

How it works

How it works

The tableau for ϕ is a tree where each node is labeled by a set
of formulae, with the root labeled with {ϕ}.

• The formula starts in Negated Normal Form.
• At each step some rules are applied to a leaf, depending
on the contents of the label, possibly generating new
children for the current node.

• Some rules can accept a branch, others can reject it.
• If the complete tree contains at least an accepted branch,
the formula is satisfiable.

8

Expansion rules

Expansion rules are applied to a node until no other
expansion rule can be applied anymore:

• Boolean connectives handled just like in classical
propositional tableau.

{α ∨ β}

{α} {β}

{α ∧ β}

{α, β}

9

Expansion rules

Expansion rules are applied to a node until no other
expansion rule can be applied anymore:

• Common expansion rules handle temporal operators:
{α U β}

{β} {α, X(α U β)}

{Fβ}

{β} {X Fβ}

{Gα}

{α, XGα}

β is called an eventuality.

9

Advancing to the next temporal step

Once the current state has been fully expanded, we proceed to
the next temporal state by the step rule:

{. . . , Xα, . . .}

{α}

10

Contradictions

If a label contains contradictions, we reject the branch.

{. . . ,p, . . . ,¬p, . . .}
7

11

Acceptance and contradictions

If a step rule results into an empty label, we’re done:
the branch is accepted.

{. . . ,p,¬q, r, . . .}

{}
3

12

Finding periodic models - loop rule

Some formulae (e.g., G Fp) require to satisfy infinitely often the
same request, thus the labels may never become empty.

This formulae will have infinite periodic models:

loop rule
If two nodes u < v with labels Γu = Γv are found and all the
eventualities in Γu are fulfilled inbetween, the branch is
accepted and the model loops through u and v.

13

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p

¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p

¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p

¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p

¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p

¬p p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p

p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p

p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

3

p ¬p

p ¬p

14

Example

{G F(p ∧ X¬p)}

{ F(p ∧ X¬p), XG F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}

{¬p, G F(p ∧ X¬p)}

{¬p, F(p ∧ X¬p), XG F(p ∧ X¬p)}

{¬p,p, X¬p, . . .}
7

{¬p, X F(p ∧ X¬p), XG F(p ∧ X¬p)}

{ F(p ∧ X¬p), G F(p ∧ X¬p)}

. . . {p, X¬p, XG F(p ∧ X¬p)}3

p ¬p p ¬p

14

Unrealizable eventualities

Something is still missing. Consider the following formula:

G¬p ∧ q U p

• It is unsatisfiable, but not because of propositional
contradictions.

• The requested eventuality is unrealizable.

15

Unrealizable eventualities - prune rule

In these cases we have to stop postponing the eventuality
to guarantee termination:

prune rule
If three occurrences of the same label Γ are found in three
nodes u < v < w and the set of eventualities fulfilled
between u and v is the same of those between v and w, the
branch is rejected.

16

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}

7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}

7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}

7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

7

17

Example - unsatisfiable formula

{G¬p ∧ q U p}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}

{G¬p,q U p}

{¬p, XG¬p,p}
7

{¬p, XG¬p,q, X(q U p)}
7

17

How it works - summary

To summarize:

• When to accept a branch?
• When the label is empty
• When we are looping while satisfying all the eventualities

• When to reject a branch?
• When a label is contradictory
• When we are looping but unable to satisfy
all the eventualities

18

How it works - summary

To summarize:

• When to accept a branch?
• When the label is empty
• When we are looping while satisfying all the eventualities

• When to reject a branch?
• When a label is contradictory
• When we are looping but unable to satisfy
all the eventualities

18

Supporting past operators

Supporting past operators

Handling the past is trivial in graph-shaped tableaux:

• Just build the graph edges such that each Yα is satisfied

Our one-pass tableau is different:

• In each branch we are committed to a single history
• How to ensure the satisfaction of past requests if the past
is fixed already?

19

Supporting past operators - expansion rules

Past temporal operators other than Yα are expanded like
their future counterparts:

{α S β}

{β} {α, Y(α S β)}

{Pβ}

{β} {Y Pβ}

{Hα}

{α, YHα}

Thus the problem reduces to correctly handling Yα formulae.

20

Supporting past operators - the yesterday rule

Introducing the yesterday rule:

• If u is such that Yα ∈ Γu and the step rule has never been
applied before, then the branch is rejected.

• Otherwise, let v be the node to which we lastly applied the
step rule.

• If we cannot find α in v nor in its expanded ancestors, then
the branch is rejected.

• A new child v′ is added to v, with Γv′ = Γv ∪ {α}

21

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Supporting past operators - example

{ϕ}

{. . . , X Y(p ∨ q), . . .}

{. . . , Y(p ∨ q), . . .}
77 *

{. . . , X Y(p ∨ q),p ∨ q, . . .} *

{. . . , X Y(p ∨ q),p, . . .}

{. . . , Y(p ∨ q), . . .}

{. . .}

.

. . .

. . .

22

Conclusions

Conclusions

We extended a recent one-pass tree-shaped tableau method
for LTL satisfiability to cover past operators:

We provided a very modular extension:

• The extension requires only a single new rule for each
new temporal operator.

• We preserve the one-pass rule-based tree search
structure of the procedure.

• We provide full soundness and completeness proofs:
• soundness never appeared before (future-only neither)
• improved, clarified completeness proof

23

Future work

Future lines of work:

• Add the past to our satisfiability checking tool.
• Not trivial: our rule causes a lot of backtracking

• Exploit the modular structure of the tableau to extend it
to other LTL extensions:

• LTL on finite traces,
• LTL with forgettable past,
• metric extensions of LTL,
• Alur & Hentzinger TPTL logic [AH94],
• …

• Implement these extensions: one tool for a broad family
of linear time logics

24

Thank you!
Questions?

Bibliography i

[AH94] Rajeev Alur and Thomas A. Henzinger. “A Really
Temporal Logic.” In: Journal of the ACM (1994).

[Ber+16] M. Bertello, N. Gigante, A. Montanari, and
M. Reynolds. “Leviathan: A New LTL Satisfiability
Checking Tool Based on a One-Pass Tree-Shaped
Tableau.” In: Proc. of the 25th International Joint
Conference on Artificial Intelligence. IJCAI 2016.

[Rey16] M. Reynolds. “A New Rule for LTL Tableaux.” In: Proc.
of the 7th International Symposium on Games,
Automata, Logics and Formal Verification.
GandALF 2016.

26

Bibliography ii

[Sch98] S. Schwendimann. “A New One-Pass Tableau
Calculus for PLTL.” In: Proc. of the 7th International
Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. TABLEAUX ’98.

27

	Introduction
	How it works
	Supporting past operators
	Conclusions

