A One-Pass Tree-Shaped Tableau for LTL+Past

Nicola Gigante
University of Udine, Italy
joint work with Angelo Montanari
University of Udine, Italy
and Mark Reynolds
University of Western Australia, Australia

LPAR-21, May 8-12 2017, Maun, Botswana

Introduction

Linear Temporal Logic

Linear Temporal Logic (LTL) is a propositional modal logic interpreted over infinite, discrete, linear orders.

$$
\begin{array}{cl}
\mathrm{X} \alpha & \alpha \text { will be true at the next state. } \\
\alpha \mathcal{U} \beta & \beta \text { will eventually be true, and } \\
& \alpha \text { always holds until then. } \\
\mathrm{F} \beta \equiv \mathrm{\top} \mathcal{U} \beta & \beta \text { will eventually be true. } \\
\mathrm{G} \beta \equiv \neg \mathrm{~F} \neg \beta & \beta \text { will always be true. }
\end{array}
$$

Augmenting LTL with past operators

LTL can be augmented with past modalities:

$$
\begin{array}{cl}
\mathrm{Y} \alpha & \alpha \text { was true at the previous state. } \\
\alpha \mathcal{S} \beta & \beta \text { has been true in the past, and } \\
& \alpha \text { always held since then. } \\
\mathrm{P} \beta \equiv \mathrm{~T} \mathcal{S} \beta & \beta \text { has been true in the past. } \\
\mathrm{H} \beta \equiv \neg \mathrm{P} \neg \beta & \text { historically, } \beta \text { has always been true. }
\end{array}
$$

Why? Past operators do not add expressive power to LTL, but they do allow to express many formulae more succinctly.

Note: formulae are satisfied if they hold at the first state.

LTL Satisfiability

LTL satisfiability is the problem of checking whether there exists a model that satisfies a given LTL formula.

- PSPACE-complete problem.
- Algorithmic solutions:
- (Büchi) Automata-based
- Tableau methods
- Temporal resolution
- Reduction to model checking
- ...

The satisfiability problem for LTL+P is still PSPACE-complete.

Why LTL satisfiability?

LTL is usually used to write specification in model checking, but other applications exist for the satisfiability problem:

- sanity checking of specifications
- temporal reasoning in Al

Tableau methods for LTL satisfiability

Tableaux were among the first methods proposed to solve the LTL satisfiability problem:

- Early tableau methods were graph-shaped and multiple-pass (Wolper 1984).
- Subsequently, Schwendimann [Sch98] introduced a single-pass tableau with a tree-like shape (still a DAG).

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability was recently proposed.

Reynolds 2016
 M. Reynolds. "A New Rule for LTL Tableaux." In: Proc. of the $7^{\text {th }}$ International Symposium on Games, Automata, Logics and Formal Verification. GandALF 2016

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability was recently proposed, and implemented in a tool.

Bertello et al. 2016

M. Bertello, N. Gigante, A. Montanari, and M. Reynolds.
"Leviathan: A New LTL Satisfiability Checking Tool Based on a
One-Pass Tree-Shaped Tableau." In: Proc. of the $25^{\text {th }}$ International Joint Conference on Artificial Intelligence. IJCAI 2016
http://www.github.com/corralx/leviathan

A One-Pass Tree-Shaped Tableau for LTL

A one-pass tree-shaped tableau method for LTL satisfiability was recently proposed, and implemented in a tool.

- Purely tree-shaped rule-based search procedure.
- A single pass is sufficient to determine the acceptance of rejection of a given branch.
- Very simple structure, combining the simplicity of declarative tableaux with the efficiency of one-pass systems.
- Easy to extend!
- Easy to parallelize (work in progress)!

A One-Pass Tree-Shaped Tableau for LTL+P

In this paper we extended the method to support LTL+P:

- The extension can be done in a very modular way:
- it respects the same one-pass tree-shaped structure.
- new rules are added to the system, with old rules left completely unchanged.
- First evidence of how this tableau can be easy to extend to different logics.

How it works

How it works

The tableau for ϕ is a tree where each node is labeled by a set of formulae, with the root labeled with $\{\phi\}$.

- The formula starts in Negated Normal Form.
- At each step some rules are applied to a leaf, depending on the contents of the label, possibly generating new children for the current node.
- Some rules can accept a branch, others can reject it.
- If the complete tree contains at least an accepted branch, the formula is satisfiable.

Expansion rules

Expansion rules are applied to a node until no other expansion rule can be applied anymore:

- Boolean connectives handled just like in classical propositional tableau.

Expansion rules

Expansion rules are applied to a node until no other expansion rule can be applied anymore:

- Common expansion rules handle temporal operators:

β is called an eventuality.

Advancing to the next temporal step

Once the current state has been fully expanded, we proceed to the next temporal state by the sTEP rule:

$$
\begin{gathered}
\{\ldots, X \alpha, \ldots\} \\
\downarrow \\
\{\alpha\}
\end{gathered}
$$

Contradictions

If a label contains contradictions, we reject the branch.

$$
\{\ldots, p, \ldots, \neg p, \ldots\}
$$

Acceptance and contradictions

If a sTEP rule results into an empty label, we're done: the branch is accepted.

$$
\begin{gathered}
\{\ldots, p, \neg q, r, \ldots\} \\
\downarrow \\
\} \\
\checkmark
\end{gathered}
$$

Finding periodic models - Loop rule

Some formulae (e.g., G Fp) require to satisfy infinitely often the same request, thus the labels may never become empty.

This formulae will have infinite periodic models:

LOOP rule

If two nodes $u<v$ with labels $\Gamma_{u}=\Gamma_{v}$ are found and all the eventualities in Γ_{u} are fulfilled inbetween, the branch is accepted and the model loops through u and v.

Example

$\{G F(p \wedge X \neg p)\}$

Example

$$
\begin{gathered}
\{G \mathrm{~F}(\mathrm{p} \wedge \mathrm{X} \neg p)\} \\
\{\mathrm{F}(\mathrm{p} \wedge \mathrm{X} \neg \mathrm{p}), \mathrm{XGF}(\mathrm{p} \wedge \mathrm{X} \neg \mathrm{p})\}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\}
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\} \\
& \{\neg p, F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{\neg p, p, X \neg p, \ldots\} \\
& x
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\} \\
& \{\neg p, F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{\neg p, p, X \neg p, \ldots\}\{\neg p, X F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& x
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\} \\
& \{\neg p, F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{\neg p, p, X \neg p, \ldots\}\{\neg p, X F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& x \\
& \downarrow \\
& \{F(p \wedge X \neg p), G F(p \wedge X \neg p)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{G F(p \wedge X \neg p)\} \\
& \{F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{p, X \neg p, X G F(p \wedge X \neg p)\} \\
& \downarrow \\
& \{\neg p, G F(p \wedge X \neg p)\} \\
& \{\neg p, F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& \{\neg p, p, X \neg p, \ldots\}\{\neg p, X F(p \wedge X \neg p), X G F(p \wedge X \neg p)\} \\
& x \\
& \downarrow \\
& \{F(p \wedge X \neg p), G F(p \wedge X \neg p)\}
\end{aligned}
$$

Example

Example

Example

Unrealizable eventualities

Something is still missing. Consider the following formula:

$$
G \neg p \wedge q \mathcal{U} p
$$

- It is unsatisfiable, but not because of propositional contradictions.
- The requested eventuality is unrealizable.

Unrealizable eventualities - PRUNE rule

In these cases we have to stop postponing the eventuality to guarantee termination:

PRUNE rule

If three occurrences of the same label Γ are found in three nodes $u<v<w$ and the set of eventualities fulfilled between u and v is the same of those between v and w, the branch is rejected.

Example - unsatisfiable formula

$$
\{G \neg p \wedge q \mathcal{U} p\}
$$

Example - unsatisfiable formula

$$
\begin{gathered}
\{G \neg p \wedge q \mathcal{U} p\} \\
\mid \\
\{G \neg p, q \mathcal{U} p\}
\end{gathered}
$$

Example - unsatisfiable formula

$$
\begin{gathered}
\{\mathrm{G} \neg p \wedge q \mathcal{U} p\} \\
\mid \\
\{\mathrm{G} \neg p, q \mathcal{U} p\} \\
\cdots \cdots \\
\{\neg p, \mathrm{XG} \neg \mathrm{p}, \mathrm{p}\}\{\neg \neg p, \mathrm{XG} \neg p, q, \times(q \mathcal{U} p)\}
\end{gathered}
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { । } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, X(q \mathcal{U} p)\}
\end{aligned}
$$

Example - unsatisfiable formula

$$
\begin{gathered}
\{\mathrm{G} \neg p \wedge q \mathcal{U} p\} \\
\mid \\
\{\mathrm{G} \neg \mathrm{p}, q \mathcal{U} p\} \\
\cdots-\bar{\prime} \\
\{\neg p, \mathrm{XG} \neg \mathrm{p}, \mathrm{p}\}\{\neg \neg p, \mathrm{XG} \neg p, q, \times(q \mathcal{U} p)\}
\end{gathered}
$$

$$
x
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { | } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\}
\end{aligned}
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { | } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, \times G \neg p, p\} \quad\{\neg p, \times \operatorname{A} \neg p, q, \times(q \mathcal{U} p)\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\}
\end{aligned}
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { | } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, \mathrm{XG} \neg p, p\}\{\neg p, \mathrm{XG} \neg p, q, \mathrm{X}(q \mathcal{U} p)\} \\
& x \quad \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, \mathrm{XG} \neg p, p\}\{\neg p, \mathrm{XG} \neg p, q, \mathrm{X}(q \mathcal{U} p)\} \\
& x
\end{aligned}
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { | } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U})\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x \quad \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x
\end{aligned}
$$

Example - unsatisfiable formula

$$
\begin{aligned}
& \{G \neg p \wedge q \mathcal{U} p\} \\
& \text { | } \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, X G \neg p, p\}\{\neg p, X G \neg p, q, \times(q \mathcal{U} p)\} \\
& x \\
& \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, \mathrm{XG} \neg p, p\}\{\neg p, \mathrm{XG} \neg p, q, \mathrm{X}(q \mathcal{U} p)\} \\
& x \quad \downarrow \\
& \{G \neg p, q \mathcal{U} p\} \\
& \{\neg p, \mathrm{XG} \neg p, p\}\{\neg p, \mathrm{XG} \neg p, q, \mathrm{X}(q \mathcal{U} p)\} \\
& x
\end{aligned}
$$

How it works - summary

To summarize:
-When to accept a branch?

- When the label is empty
- When we are looping while satisfying all the eventualities
- When to reject a branch?
-When a label is contradictory
- When we are looping but unable to satisfy all the eventualities

How it works - summary

To summarize:
-When to accept a branch?

- When the label is empty
- When we are looping while satisfying all the eventualities
- When to reject a branch?
-When a label is contradictory
- When we are looping but unable to satisfy all the eventualities

Supporting past operators

Supporting past operators

Handling the past is trivial in graph-shaped tableaux:

- Just build the graph edges such that each $\mathrm{Y} \alpha$ is satisfied

Our one-pass tableau is different:

- In each branch we are committed to a single history
- How to ensure the satisfaction of past requests if the past is fixed already?

Supporting past operators - expansion rules

Past temporal operators other than $Y \alpha$ are expanded like their future counterparts:

Thus the problem reduces to correctly handling $Y \alpha$ formulae.

Supporting past operators - the YESTERDAY rule

Introducing the YESTERDAY rule:

- If u is such that $Y \alpha \in \Gamma_{u}$ and the STEP rule has never been applied before, then the branch is rejected.
- Otherwise, let v be the node to which we lastly applied the sTEP rule.
- If we cannot find α in v nor in its expanded ancestors, then the branch is rejected.
- A new child v^{\prime} is added to v, with $\Gamma_{v^{\prime}}=\Gamma_{v} \cup\{\alpha\}$

Supporting past operators - example

$\{\phi\}$

Supporting past operators - example

$$
\begin{aligned}
& , \ldots,{ }^{\{\phi\}} \\
& \{\ldots, X Y(p \vee q), \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \{\phi\} \\
& \{\ldots, X Y(p \vee q), \ldots\} \\
& \downarrow \\
& \{\ldots, Y(p \vee q), \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \{\phi\} \\
& \{\ldots, X Y(p \vee q), \ldots\} \\
& \downarrow \\
& \{\ldots, Y(p \vee q), \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \{\ldots, Y(p \vee q), \ldots\} \quad\{\ldots, X Y(p \vee q), p \vee q, \ldots\} \text { * } \\
& x^{*}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \underset{\substack{ \\
\{\ldots, X Y(p \vee q) \\
\downarrow}}{\ldots, \ldots\}} \underbrace{\{\phi \phi\}} \ldots \\
& \{\ldots, Y(p \vee q), \ldots\} \quad\{\ldots, X Y(p \vee q), p \vee q, \ldots\} \text { * } \\
& x^{*} \quad\{\ldots, X Y(p \vee q), p, \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \{\ldots, Y(p \vee q), \ldots\} \quad\{\ldots, X Y(p \vee q), p \vee q, \ldots\} \text { * } \\
& x^{*} \\
& \{\ldots, X Y(p \vee q), p, \ldots\} \\
& \downarrow \\
& \{\ldots, Y(p \vee q), \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \{\ldots, Y(p \vee q), \ldots\} \quad\{\ldots, X Y(p \vee q), p \vee q, \ldots\} \text { * } \\
& x^{*} \\
& \{\ldots, X Y(p \vee q), p, \ldots\} \\
& \downarrow \\
& \{\ldots, Y(p \vee q), \ldots\}
\end{aligned}
$$

Supporting past operators - example

$$
\begin{aligned}
& \underset{\downarrow}{\{\ldots, X Y(p \vee q)}, \ldots\} \quad \cdots \\
& \{\ldots, Y(p \vee q), \ldots\} \quad\{\ldots, X Y(p \vee q), p \vee q, \ldots\} \text { * } \\
& x^{*} \\
& \{\ldots, X Y(p \vee q), p, \ldots\} \\
& \downarrow \\
& \{\ldots, Y(p \vee q), \ldots\} \\
& \downarrow \\
& \{\ldots\}
\end{aligned}
$$

Conclusions

Conclusions

We extended a recent one-pass tree-shaped tableau method for LTL satisfiability to cover past operators:

We provided a very modular extension:

- The extension requires only a single new rule for each new temporal operator.
- We preserve the one-pass rule-based tree search structure of the procedure.
- We provide full soundness and completeness proofs:
- soundness never appeared before (future-only neither)
- improved, clarified completeness proof

Future work

Future lines of work:

- Add the past to our satisfiability checking tool.
- Not trivial: our rule causes a lot of backtracking
- Exploit the modular structure of the tableau to extend it to other LTL extensions:
- LTL on finite traces,
- LTL with forgettable past,
- metric extensions of LTL,
- Alur \& Hentzinger TPTL logic [AH94],
- ...
- Implement these extensions: one tool for a broad family of linear time logics

Thank you!

Questions?

Bibliography i

[AH94] Rajeev Alur and Thomas A. Henzinger. "A Really Temporal Logic." In: Journal of the ACM (1994).
[Ber+16] M. Bertello, N. Gigante, A. Montanari, and M. Reynolds. "Leviathan: A New LTL Satisfiability Checking Tool Based on a One-Pass Tree-Shaped Tableau." In: Proc. of the $25^{\text {th }}$ International Joint Conference on Artificial Intelligence. IJCAI 2016.
[Rey16] M. Reynolds. "A New Rule for LTL Tableaux." In: Proc. of the $7^{\text {th }}$ International Symposium on Games, Automata, Logics and Formal Verification. GandALF 2016.

Bibliography ii

[Sch98] S. Schwendimann. "A New One-Pass Tableau Calculus for PLTL." In: Proc. of the $7^{\text {th }}$ International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX '98.

