Parallel Graph Rewriting with Overlapping Rules

Rachid Echahed and Aude Maignan

University Grenoble Alpes Grenoble Informatics Laboratory Applied Mathematics and Computer Science laboratory Jean Kuntzmann

LPAR-21 2017, May

Aude Maignan

Parallel Graph Rewriting

LPAR-21 2017, May 1 / 23

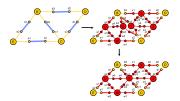
Table of Contents

Introduction

- Pregraphs Graphs and Quotient Pregraphs
- 3 Graph Rewrite Systems
- 4 Two Parallel Rewrite Relations
- 5 Conclusion and future work

Introduction

- Compute discrete bioinspired systems (Cellular automata, L-systems)
- Speed up sequential rewriting



Algorithmic approach using

- pregraphs
- rewriting modulo

Table of Contents

Introduction

Pregraphs - Graphs and Quotient Pregraphs

Graph Rewrite Systems

- 4 Two Parallel Rewrite Relations
- **5** Conclusion and future work

Table of Contents

1 Introduction

Pregraphs - Graphs and Quotient Pregraphs

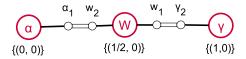
- 3 Graph Rewrite Systems
- 4 Two Parallel Rewrite Relations
- 5 Conclusion and future work

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- $\bullet \ \mathcal{N}_H \ \mathsf{Nodes}$
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- \mathcal{PP}_H Port-Port connections

• Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$



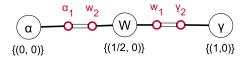
 $\mathcal{N}_H = \{\alpha, \gamma, W\}$

イロト イポト イヨト イヨト

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}\mathcal{N}_H, \mathcal{P}\mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- \mathcal{N}_H Nodes
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- \mathcal{PP}_H Port-Port connections
- Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$

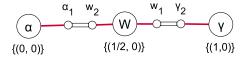


$$\mathcal{P}_H = \{\alpha_1, w_2, w_1, \gamma_2\}$$

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- \mathcal{N}_H Nodes
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- \mathcal{PP}_H Port-Port connections
- Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$



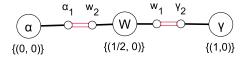
 $\mathcal{P} \mathcal{N}_H = \{(\alpha_1, \alpha), (w_1, W), (w_2, W), (\gamma_2, \gamma)\}$

- 4 同 6 - 4 目 6 - 4 目 6

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- \mathcal{N}_H Nodes
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- \mathcal{PP}_H Port-Port connections
- Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$



 \mathcal{PP}_H reduced to its non symmetric port-port connection is $\mathcal{PP}_H = \{(\alpha_1, w_2), (w_1, \gamma_2)\}.$

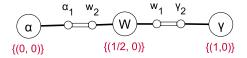
< ロ > < 同 > < 三 >

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}\mathcal{N}_H, \mathcal{P}\mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- \mathcal{N}_H Nodes
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- *PP_H* Port-Port connections

• Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$



 $\mathcal{A}_H = (\mathbb{Q}[x, y]; +, /), \ \lambda_H(\alpha_1) = \lambda_H(w_2) = \lambda_H(w_1) = \lambda_H(\gamma_2) = \emptyset$ $\lambda_H(\alpha) = \{(0, 0)\}, \ \lambda_H(W) = \{(\frac{1}{2}, 0)\}, \ \lambda_H(\gamma) = \{(1, 0)\}$

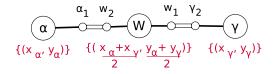
ト くぼ ト くほ ト く ほ ト 二 ほ

A pregraph H is a tuple $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P} \mathcal{N}_H, \mathcal{P} \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$

- \mathcal{N}_H Nodes
- \mathcal{P}_H Ports

- \mathcal{PN}_H Port-Node connections
- *PP_H* Port-Port connections

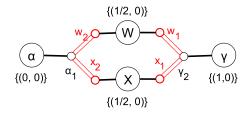
• Attributes : λ_H is a function $\lambda_H : \mathcal{P}_H \uplus \mathcal{N}_H \to 2^{\mathcal{A}_H}$



 $\mathcal{A}_{H} = (\mathbb{Q}[x, y]; +, /), \ \lambda_{H}(\alpha_{1}) = \lambda_{H}(w_{2}) = \lambda_{H}(w_{1}) = \lambda_{H}(\gamma_{2}) = \emptyset$ $\lambda_{H}(\alpha) = \{(x_{\alpha}, y_{\alpha})\}, \ \lambda_{H}(\gamma) = \{(x_{\gamma}, y_{\gamma})\}, \ \lambda_{H}(W) = \{(\frac{x_{\alpha} + x\gamma}{2}, \frac{y_{\alpha} + y\gamma}{2})\}$

Graph definition

- A graph, G, is a pregraph $G=(\mathcal{N},\mathcal{P},\mathcal{P\!N},\mathcal{P\!P},\mathcal{A},\lambda)$ such that :
 - (i) $((p_1, p_2) \in \mathcal{PP} \text{ and } (p_1, p_3) \in \mathcal{PP}) \implies p_2 = p_3 \text{ and } \forall p \in \mathcal{P}, (p, p) \notin \mathcal{PP}.$
- (ii) $((p, n_1) \in \mathcal{PN} and (p, n_2) \in \mathcal{PN}) \implies n_1 = n_2.$

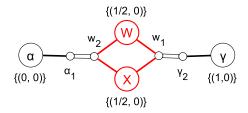


- 4 同 6 - 4 目 6 - 4 目 6

Graph definition

A graph, G, is a pregraph $G=(\mathcal{N},\mathcal{P},\mathcal{P\!N},\mathcal{P\!P},\mathcal{A},\lambda)$ such that :

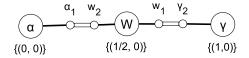
- (i) $((p_1, p_2) \in \mathcal{PP} \text{ and } (p_1, p_3) \in \mathcal{PP}) \implies p_2 = p_3 \text{ and } \forall p \in \mathcal{P}, (p, p) \notin \mathcal{PP}.$
- (ii) $((p, n_1) \in \mathcal{PN} and (p, n_2) \in \mathcal{PN}) \implies n_1 = n_2.$



- * 同 * * ヨ * * ヨ *

Graph definition

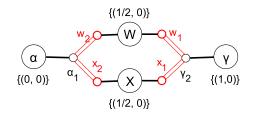
- A graph, G, is a pregraph $G=(\mathcal{N},\mathcal{P},\mathcal{P\!N},\mathcal{P\!P},\mathcal{A},\lambda)$ such that :
 - (i) $((p_1, p_2) \in \mathcal{PP} \text{ and } (p_1, p_3) \in \mathcal{PP}) \implies p_2 = p_3 \text{ and } \forall p \in \mathcal{P}, (p, p) \notin \mathcal{PP}.$
- (ii) $((p, n_1) \in \mathcal{PN} \text{ and } (p, n_2) \in \mathcal{PN}) \implies n_1 = n_2.$



イロト イポト イヨト イヨト 二日

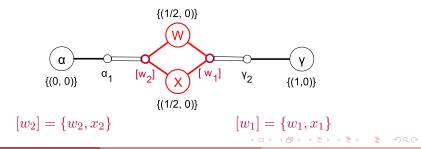
Definition (\equiv^{P} , \equiv^{N}) Let $H = (\mathcal{N}_{H}, \mathcal{P}_{H}, \mathcal{P}_{N}_{H}, \mathcal{P}_{P}_{H}, \mathcal{A}_{H}, \lambda_{H})$ be a pregraph. • \equiv^{P} is defined as $(\mathcal{P}_{P}_{H} \bullet \mathcal{P}_{P}_{H})^{*}$ • \equiv^{N} is defined as $(\mathcal{P}_{H}^{-} \bullet \equiv^{P} \bullet \mathcal{P}_{N})^{*}$

where \bullet denotes relation composition, - the converse of a relation and * the reflexive-transitive closure of a relation.



Definition (\equiv^P, \equiv^N) Let $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$ be a pregraph. • \equiv^P is defined as $(\mathcal{P}_H \bullet \mathcal{P}_H)^*$ • \equiv^N is defined as $(\mathcal{P}_H \bullet =^P \bullet \mathcal{P}_H)^*$

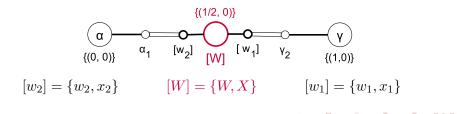
where \bullet denotes relation composition, - the converse of a relation and * the reflexive-transitive closure of a relation.



Definition (\equiv^P, \equiv^N) Let $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$ be a pregraph. • \equiv^P is defined as $(\mathcal{P}_H \bullet \mathcal{P}_H)^*$

•
$$\equiv^N$$
 is defined as $(\mathcal{P} \mathcal{N}_H^- \bullet \equiv^P \bullet \mathcal{P} \mathcal{N})^*$

where \bullet denotes relation composition, - the converse of a relation and * the reflexive-transitive closure of a relation.



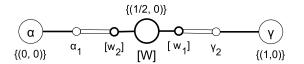
Definition (\equiv^P, \equiv^N)

Let
$$H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{P}_H, \mathcal{A}_H, \lambda_H)$$
 be a pregraph.

•
$$\equiv^P$$
 is defined as $(\mathcal{PP}_H \bullet \mathcal{PP}_H)^*$

•
$$\equiv^N$$
 is defined as $(\mathcal{P} \mathcal{N}_H^- \bullet \equiv^P \bullet \mathcal{P} \mathcal{N})^*$

where \bullet denotes relation composition, - the converse of a relation and * the reflexive-transitive closure of a relation.



Quotient pregraph \bar{H}

Parallel Graph Rewriting

Quotient pregraph and Graph isomorphism

 $\textbf{Quotient pregraph}: \ \overline{H} = (\mathcal{N}_{\overline{H}}, \mathcal{P}_{\overline{H}}, \mathcal{P} \mathcal{N}_{\overline{H}}, \mathcal{P} \mathcal{P}_{\overline{H}}, \mathcal{A}_{\overline{H}}, \lambda_{\overline{H}})$

$$\begin{array}{l} \bullet \ \mathcal{N}_{\overline{H}} = \{[n] \mid n \in \mathcal{N}_H\}, \\ \bullet \ \mathcal{P}_{\overline{H}} = \{[p] \mid p \in \mathcal{P}_H\}, \\ \bullet \ \mathcal{P}\mathcal{N}_{\overline{H}} = \{([p], [n]) \mid (p, n) \in \mathcal{P}\mathcal{N}_H\}, \\ \bullet \ \mathcal{P}\mathcal{P}_{\overline{H}} = \{([p], [q]) \mid (p, q) \in \mathcal{P}\mathcal{P}_H\}, \\ \bullet \ \mathcal{A}_{\overline{H}} = \mathcal{A}_H \text{ and } \lambda_{\overline{H}}([x]) = \cup_{x' \in [x]} \lambda_H(x') \text{ where } [x] \in \mathcal{N}_{\overline{H}} \uplus \mathcal{P}_{\overline{H}} \end{array}$$

Theorem : Let H and H' be two isomorphic pregraphs. Then \bar{H} and $\bar{H'}$ are isomorphic.

Table of Contents

1 Introduction

Pregraphs - Graphs and Quotient Pregraphs

3 Graph Rewrite Systems

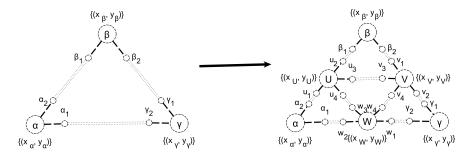
- 4 Two Parallel Rewrite Relations
- 5 Conclusion and future work

$$\rightarrow r$$

$$l = (\mathcal{N}_l, \mathcal{P}_l, \mathcal{P} \mathcal{N}_l, \mathcal{P} \mathcal{P}_l, \mathcal{A}, \lambda_l)$$

env part l^{env}
cut part l^{cut}

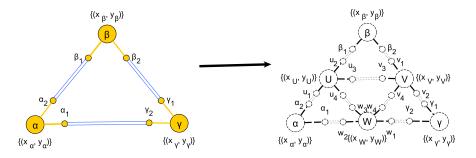
$$\begin{split} r &= (\mathcal{N}_r, \mathcal{P}_r, \mathcal{P} \mathcal{N}_r, \mathcal{P} \mathcal{P}_r, \mathcal{A}, \lambda_r) \\ \text{env part : } r^{env} \\ \text{new part } r^{new} \end{split}$$



$$\rightarrow r$$

$$\begin{split} l &= (\mathcal{N}_l, \mathcal{P}_l, \mathcal{P} \mathcal{N}_l, \mathcal{P} \mathcal{P}_l, \mathcal{A}, \lambda_l) \\ \text{env part} \quad l^{env} \\ \text{cut part} \quad l^{cut} \end{split}$$

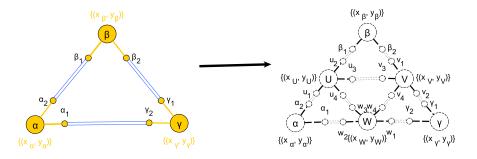
$$\begin{split} r &= (\mathcal{N}_r, \mathcal{P}_r, \mathcal{P} \mathcal{N}_r, \mathcal{P} \mathcal{P}_r, \mathcal{A}, \lambda_r) \\ \text{env part : } r^{env} \\ \text{new part } r^{new} \end{split}$$



$$\rightarrow r$$

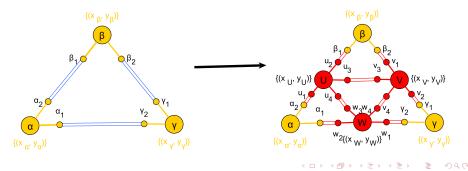
$$\begin{split} l &= (\mathcal{N}_l, \mathcal{P}_l, \mathcal{P} \mathcal{N}_l, \mathcal{P} \mathcal{P}_l, \mathcal{A}, \lambda_l) \\ \text{env part} \quad l^{env} \\ \text{cut part} \quad l^{cut} \end{split}$$

$$\begin{split} r &= (\mathcal{N}_r, \mathcal{P}_r, \mathcal{P} \mathcal{N}_r, \mathcal{P} \mathcal{P}_r, \mathcal{A}, \lambda_r) \\ \text{env part : } r^{env} \\ \text{new part } r^{new} \end{split}$$



$$\begin{split} l &= (\mathcal{N}_l, \mathcal{P}_l, \mathcal{P} \mathcal{N}_l, \mathcal{P} \mathcal{P}_l, \mathcal{A}, \lambda_l) \\ \text{env part} \quad l^{env} \\ \text{cut part} \quad l^{cut} \end{split}$$

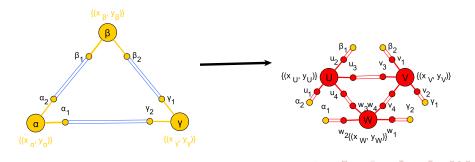
$$\begin{split} r &= (\mathcal{N}_r, \mathcal{P}_r, \mathcal{P} \mathcal{N}_r, \mathcal{P} \mathcal{P}_r, \mathcal{A}, \lambda_r) \\ \text{env part : } r^{env} \\ \text{new part } r^{new} \end{split}$$



$$l \longrightarrow r$$

$$\begin{split} l &= (\mathcal{N}_l, \mathcal{P}_l, \mathcal{P} \mathcal{N}_l, \mathcal{P} \mathcal{P}_l, \mathcal{A}, \lambda_l) \\ \text{env part} \quad l^{env} \\ \text{cut part} \quad l^{cut} \end{split}$$

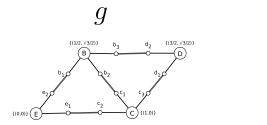
$$\begin{split} r &= (\mathcal{N}_r, \mathcal{P}_r, \mathcal{P} \mathcal{N}_r, \mathcal{P} \mathcal{P}_r, \mathcal{A}, \lambda_r) \\ \text{env part : } r^{env} \\ \text{new part } r^{new} \end{split}$$

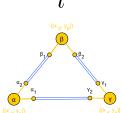


LPAR-21 2017, May 11 / 23

Definition (Matches)

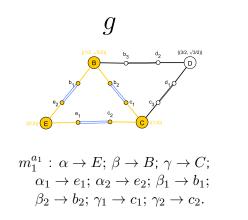
Let l and g be two graphs. A match $m^a : l \to g$ is defined as an injective graph homomorphism. $a : A_l \to A_g$ being an injective homomorphism over attributes.

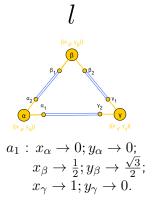




Definition (Matches)

Let l and g be two graphs. A match $m^a : l \to g$ is defined as an injective graph homomorphism. $a : A_l \to A_g$ being an injective homomorphism over attributes.

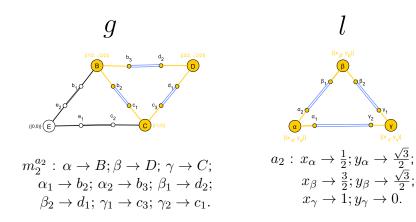




イロト イポト イヨト イヨト

Definition (Matches)

Let l and g be two graphs. A match $m^a : l \to g$ is defined as an injective graph homomorphism. $a : A_l \to A_g$ being an injective homomorphism over attributes.

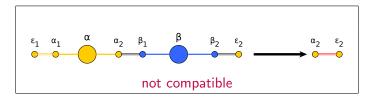


Compatible rules

 $l_1 \to r_1$ and $l_2 \to r_2$ are said to be compatible iff for all graphs G and matches $m_1^{a_1}: l_1 \to G$ and $m_2^{a_2}: l_2 \to G$,

 \bullet no element of $m_1^{a_1}(r_1^{env})$ is in $m_2^{a_2}(l_2^{cut})$ and

• no element of $m_2^{a_2}(r_2^{env})$ is in $m_1^{a_1}(l_1^{cut})$.



Theorem : The problem of the verification of compatibility of two rules is decidable.

Considered rewrite systems are consisting of pairwise compatible rules

Aude Maignan	Parallel Graph Rewriting	LPAF	R-21 20)17, May		13 / 23
	•	< 🗗 🕨 <	1≣ ▶	< ≣ > _	₹.	うくで

Parallel rewrite step $G \Rightarrow_{I,M} G'$

•
$$\mathcal{R} = \{L_i \to R_i \mid i = 1 \dots n\}$$

- I set of variants $I = \{l_i \rightarrow r_i \mid i = 1 \dots k\}$
- M a set of matches $M = \{m_i^{a_i}: l_i \to G \mid i = 1 \dots k\}$

First step: A pregraph $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}\mathcal{N}_H, \mathcal{PP}_H, \mathcal{A}_H, \lambda_H)$ is computed using the different matches and rules

•
$$H = (G - \cup_{i=1}^k m_i^{a_i}(l_i^{cut})) \uplus \cup_{i=1}^k r_i^{new}$$

Second step: $G' = \overline{H}$

Parallel rewrite step $G \Rightarrow_{I,M} G'$

•
$$\mathcal{R} = \{L_i \to R_i \mid i = 1 \dots n\}$$

• I set of variants $I = \{l_i \rightarrow r_i \mid i = 1 \dots k\}$

• M a set of matches $M = \{m_i^{a_i}: l_i \to G \mid i = 1 \dots k\}$

First step: A pregraph $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}\mathcal{N}_H, \mathcal{PP}_H, \mathcal{A}_H, \lambda_H)$ is computed using the different matches and rules

•
$$\mathcal{N}_{H} = (\mathcal{N}_{G} - \bigcup_{i=1}^{k} \mathcal{N}_{m_{i}^{ai}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{N}_{r_{i}}^{new}$$

• $\mathcal{P}_{H} = (\mathcal{P}_{G} - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{ai}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{r_{i}}^{new}$
• $\mathcal{P}_{H} = ((\mathcal{P}_{G} \cap (\mathcal{P}_{H} \times \mathcal{N}_{H})) - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{ai}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{ai}(r_{i})}^{new}$
• $\mathcal{P}_{H} = ((\mathcal{P}_{G} \cap (\mathcal{P}_{H} \times \mathcal{P}_{H})) - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{ai}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{ai}(r_{i})}^{new}$
• $\mathcal{A}_{H} = \mathcal{A}_{G} \text{ and } \lambda_{H} = (\lambda_{G} - \bigcup_{i=1}^{k} \lambda_{m_{i}^{cut}}^{cut}) \cup \bigcup_{i=1}^{n} \lambda_{m_{i}^{new}(r_{i})}^{new}$

Second step: $G' = \overline{H}$

Parallel rewrite step $G \Rightarrow_{I,M} G'$

•
$$\mathcal{R} = \{L_i \to R_i \mid i = 1 \dots n\}$$

• I set of variants $I = \{l_i \rightarrow r_i \mid i = 1 \dots k\}$

• M a set of matches $M = \{m_i^{a_i}: l_i \to G \mid i = 1 \dots k\}$

First step: A pregraph $H = (\mathcal{N}_H, \mathcal{P}_H, \mathcal{P}\mathcal{N}_H, \mathcal{PP}_H, \mathcal{A}_H, \lambda_H)$ is computed using the different matches and rules

•
$$\mathcal{N}_{H} = (\mathcal{N}_{G} - \bigcup_{i=1}^{k} \mathcal{N}_{m_{i}^{a_{i}}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{N}_{r_{i}}^{new}$$

• $\mathcal{P}_{H} = (\mathcal{P}_{G} - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{a_{i}}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{r_{i}}^{new}$
• $\mathcal{P}_{H} = ((\mathcal{P}_{G} \cap (\mathcal{P}_{H} \times \mathcal{N}_{H})) - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{a_{i}}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{a_{i}}(r_{i})}^{new}$
• $\mathcal{P}_{H} = ((\mathcal{P}_{G} \cap (\mathcal{P}_{H} \times \mathcal{P}_{H})) - \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{a_{i}}(l_{i})}^{cut}) \uplus \bigcup_{i=1}^{k} \mathcal{P}_{m_{i}^{a_{i}}(r_{i})}^{new}$
• $\mathcal{A}_{H} = \mathcal{A}_{G} \text{ and } \lambda_{H} = (\lambda_{G} - \bigcup_{i=1}^{k} \lambda_{m_{i}^{cut}}^{cut}) \cup \bigcup_{i=1}^{n} \lambda_{m_{i}^{new}}^{new}_{m_{i}^{a_{i}}(r_{i})}$

Second step: $G' = \overline{H}$ **Theorem :** \overline{H} is a graph

イロト イポト イヨト イヨト 二日

$$\mathcal{R} = \{ \underbrace{\begin{subarray}{c} \begin{subarray}{c} \begin{subara$$

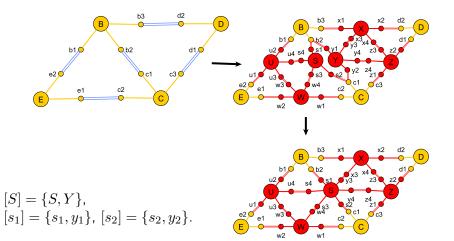


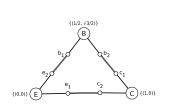
Table of Contents

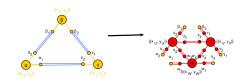
1 Introduction

- Pregraphs Graphs and Quotient Pregraphs
- 3 Graph Rewrite Systems
- 4 Two Parallel Rewrite Relations
- 5 Conclusion and future work

Full Parallel Rewrite Relation

Full parallel matches : M the maximal subset of $\mathcal{M}_{\mathcal{R}}(g) = \{m_i^{a_i} : l_i \to g \mid m_i^{a_i} \text{ is a match and } l_i \to r_i \text{ is a variant}\}.$ s.t. $\forall m_1^{a_1}, m_2^{a_2} \in M, m_1^{a_1} \not\approx m_2^{a_2}.$ Full parallel rewriting : $g \rightrightarrows_M g'$

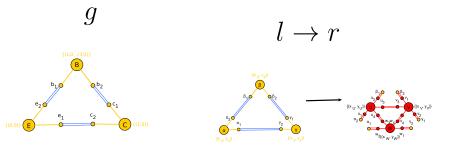




 $l \rightarrow r$

Full Parallel Rewrite Relation

Full parallel matches : M the maximal subset of $\mathcal{M}_{\mathcal{R}}(g) = \{m_i^{a_i} : l_i \to g \mid m_i^{a_i} \text{ is a match and } l_i \to r_i \text{ is a variant}\}.$ s.t. $\forall m_1^{a_1}, m_2^{a_2} \in M, m_1^{a_1} \not\approx m_2^{a_2}.$ Full parallel rewriting : $g \rightrightarrows_M g'$



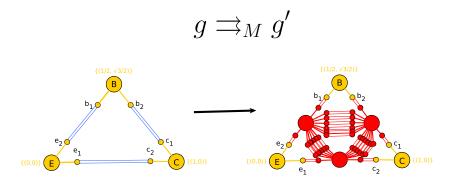
6 matches!

ıde		

LPAR-21 2017, May 17 / 23

Full Parallel Rewrite Relation

Full parallel matches : M the maximal subset of $\mathcal{M}_{\mathcal{R}}(g) = \{m_i^{a_i} : l_i \to g \mid m_i^{a_i} \text{ is a match and } l_i \to r_i \text{ is a variant}\}.$ s.t. $\forall m_1^{a_1}, m_2^{a_2} \in M, m_1^{a_1} \not\approx m_2^{a_2}.$ Full parallel rewriting : $g \rightrightarrows_M g'$



Full Parallel Rewrite Relation and distinguishing attributes

Full parallel rewriting : $g \rightrightarrows_M g'$

 $\rightarrow r$ $\{(1/2, \sqrt{3}/2)\}$ в $\{1\}\{2\}$ {1} 0{2} {2}Q^c1 $\{1\}$ 0 {2} c2 {1} {3} {3} C) {(1,0)} {(0,0)} (F {3} {3}

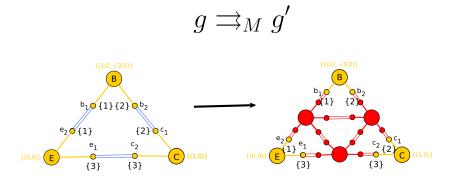
Full Parallel Rewrite Relation and distinguishing attributes

Full parallel rewriting : $g \rightrightarrows_M g'$

y $l \rightarrow r$ $b_1 \neq \{1\} \{2\} \in b_2$ $\{1\}$ 0{2} $\{2\} \circ c_1$ $e_{2} \circ \{1\}$ $\{1\}$ 0 {2} c2 {1} C {(1,0)} {3} {3} E {3} {3}

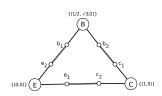
1 match!

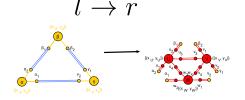
Full Parallel Rewrite Relation and distinguishing attributes Full parallel rewriting : $g \rightrightarrows_M g'$



Parallel Rewrite Relation up to Automorphisms

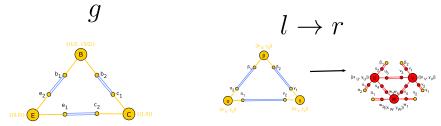
Symmetry condition : $\forall h^a \in H(l), \exists h'^a \in H(r), \text{ such that } \forall x \in r^{env}, h^a(x) = h'^a(x)$ Matches up to automorphism there exists an auto. $h^a : l \to l$ such that $m_1^{b_1} = m_2^{b_2} \circ h^a$ Rewriting up to automorphisms $M_{\mathcal{R},G}^{auto} = \{m_i^{a_i} : l_i \to G \mid m_i^{a_i} \text{ is a match up to auto}\}.$ Rewriting up to automorphisms : $g \rightrightarrows_{auto} g'$





Parallel Rewrite Relation up to Automorphisms

Symmetry condition : $\forall h^a \in H(l), \exists h'^a \in H(r), \text{ such that } \forall x \in r^{env}, h^a(x) = h'^a(x)$ Matches up to automorphism there exists an auto. $h^a : l \to l$ such that $m_1^{b_1} = m_2^{b_2} \circ h^a$ Rewriting up to automorphisms $M_{\mathcal{R},G}^{auto} = \{m_i^{a_i} : l_i \to G \mid m_i^{a_i} \text{ is a match up to auto}\}.$ Rewriting up to automorphisms : $g \Rightarrow_{auto} g'$

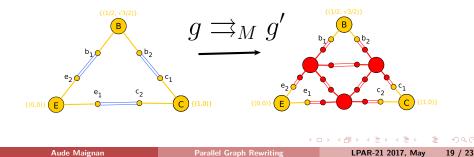


1 match up to automorphism! (instead of 6)

ıde		

Parallel Rewrite Relation up to Automorphisms

Symmetry condition : $\forall h^a \in H(l), \exists h'^a \in H(r), \text{ such that } \forall x \in r^{env}, h^a(x) = h'^a(x)$ Matches up to automorphism there exists an auto. $h^a : l \to l$ such that $m_1^{b_1} = m_2^{b_2} \circ h^a$ Rewriting up to automorphisms $M_{\mathcal{R},G}^{auto} = \{m_i^{a_i} : l_i \to G \mid m_i^{a_i} \text{ is a match up to auto}\}.$ Rewriting up to automorphisms $: g \Rightarrow_{auto} g'$



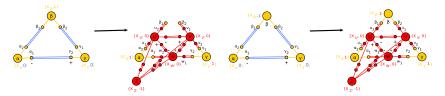
Parallel rewriting and determinism

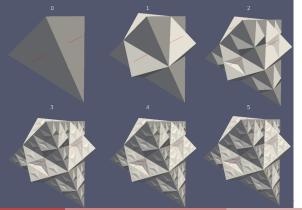
Theorem : The rewrite relation \Rightarrow is deterministic : For all graphs G, $(G \Rightarrow G_1 \text{ and } G \Rightarrow G_2)$ implies that G_1 and G_2 are isomorphic.

Theorem : The rewrite relation \rightrightarrows_{auto} is deterministic :

For all graphs G, for all \mathcal{R} satisfying the symmetry condition $(G \rightrightarrows_{auto} G'_1)$ and $G \rightrightarrows_{auto} G'_2$ implies that G'_1 and G'_2 are isomorphic.

Example : Koch snow flake





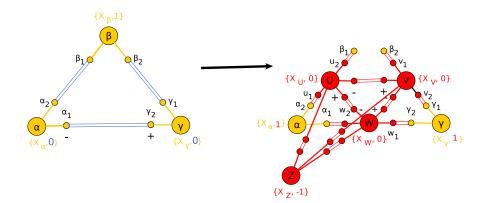
Aude Maignan

Parallel Graph Rewriting

LPAR-21 2017, May 21 / 23

Example : Koch snow flake

rule 1



< 17 ▶

Table of Contents

1 Introduction

- Pregraphs Graphs and Quotient Pregraphs
- 3 Graph Rewrite Systems
- 4 Two Parallel Rewrite Relations
- **(5)** Conclusion and future work

Conclusion

- Algorithmic approach of parallel graph rewriting
- Rules can overlap
- Two deterministic parallel rewrite strategies

Future work

- Software
- Theoretical extensions
 - Stochastic parallel rewriting
 - Conditional parallel rewriting
 - Bloc parallel rewriting