TacticToe Learning to Reason with HOL4 Tactics

Thibault Gauthier, Cezary Kaliszyk, Josef Urban

May 8, 2017

Reasoning with inference rules

• • •

2 /16

Reasoning with inference rules

Reasoning with inference rules

Reasoning with tactics

• • •

3 /16

Reasoning with tactics

Reasoning with tactics

Common tactics

- ► REWRITE_TAC
- ► INDUCT_TAC
- ► METIS_TAC

Tactic selection

Was the tactic sucessful before on similar goals?

Before: Recording tactics

- Globalizing:
 - Local values
 let val x = 5 in NTAC x INDUCT_TAC end
 - Modules
 Ho_rewrite, Rewrite
- ► Wrapping:

R INDUCT_TAC THENL [R REWRITE_TAC, R METIS_TAC]

Database:

Similarity

Features: constants, subterms, names of variables, ...

INDUCT_TAC [+,>=,...]
INDUCT_TAC [*,>=,...]
REWRITE_TAC [1,2,+,=,...]

Best predicted tactic for 2 >= 1?

How to search for a proof?

Depth first search:

- Start with the conjecture
- Apply best predicted tactic
- Repeat on the new goals
- A*-search:
 - ► Cost: length of the proofs needed to create the goal
 - ► Heuristic: evaluation of the length of the remaining proof

HOL(y)Hammer

General results

ID		7902 theorems	
TacticToe		29.73	
TacticToe*	"little hammer"	39.42	
HolyHammer	E knn 128 blistr	32.35	

Results by theories

	arith	real	compl	meas
TacticToe	37.3	19.7	42.6	19.6
TacticToe*	60.1	46.1	63.7	22.1
HolyHammer	51.9	66.8	72.3	13.1
	proba	list	sort	f_map
TacTicToe	proba 25.3	list 48.1	sort 32.7	f_map 53.4
TacTicToe TacTicToe*	proba 25.3 25.3	list 48.1 51.9	sort 32.7 34.7	f_map 53.4 55.5

Example in gcdTheory: GCD_ADD_L

$$\forall a \ b. \ gcd \ (a+b) \ a=gcd \ a \ b$$

Human proof: PROVE_TAC [GCD_SYM,GCD_ADD_R]

```
TacticToe proof:
ARW_TAC
THEN MATCH_MP_TAC (SPECL [a, a + b] IS_GCD_UNIQUE)
THEN ARW [...] IS_GCD_MINUS_R
THEN PROVE_TAC [GCD_IS_GCD, IS_GCD_UNIQUE, IS_GCD_SYM]
```

HolyHammer proof: METIS_TAC [GCD_SYM,GCD_ADD_R]

Example in listTheory: DROP_NIL

$\forall ls \ n. \ (DROP \ n \ ls = []) \Leftrightarrow n \ge LENGTH \ ls$

Human proof: Induct THEN SRW_TAC [] [] THEN DECIDE_TAC

TacticToe proof: INDUCT_THEN list_INDUCT ASSUME_TAC THENL [SRW_TAC [] [], SRW_TAC [ARITH_ss] []]

Conclusion

TacticToe combines previous human proofs to solve new goals.

- Induction principle
- Simplification sets
- User-defined domain specific automation

The proofs produced are efficient HOL4 proof scripts.

Future works

- More features for goals:
 - Tactic arguments relation to the goal
 - ► Time to solve, number of tactics necessary
- ► Extending the **policy**: tactic argument selection
- Better evaluation of the difficulty of the goal