Higher-order Interpretations for Higher-order Complexity

Emmanuel Hainry \& Romain Péchoux
LPAR, 11 may 2017
CNRS, INRIA, Université de Lorraine \& LORIA, Nancy, France

Introduction

First-order computability and complexity

- Computability is well understood:
- Definitions, hierarchies (Turing degree)
- Church-Turing's thesis
- Computational Complexity is well understood:
- Definitions, classes
- Various characterizations:
- machine based characterizations
- machine independent characterizations
\rightarrow Implicit Computational Complexity

Higher-order computability and complexity

- Computability is (well) understood:
- Order 2 = computations over reals.
- No Church-Turing's thesis!
- General Purpose Analog Computer by Shannon,
- Blum-Shub-Smale model,
- Computable Analysis (CA) by Weihrauch,
- Oracle TM, ...

Higher-order computability and complexity

- Computability is (well) understood:
- Order 2 = computations over reals.
- No Church-Turing's thesis!
- General Purpose Analog Computer by Shannon,
- Blum-Shub-Smale model,
- Computable Analysis (CA) by Weihrauch,
- Oracle TM, ...
- Complexity is not well understood.
- Polytime complexity on OTM = Basic Feasible Functions (BFF) by Constable, Melhorn
- Polytime complexity in $\mathrm{CA}=P(\mathbb{R})$ by Ko
- No homogeneous theory for higher-order:

$$
P(\mathbb{R}) \neq B F F
$$

Objectives of this talk:

- not developping a new complexity theory for higher-order,
- adapting first-order tools for program complexity analysis,
- validating the theory by capturing existing higher-order complexity classes

Objectives of this talk:

- not developping a new complexity theory for higher-order,
- adapting first-order tools for program complexity analysis,
- validating the theory by capturing existing higher-order complexity classes

Framework:

- tool $=($ polynomial $)$ interpretations
- target $=\mathbf{B F F}_{i}$, the Basic Feasible Functionals at any order.

First-order interpretations

First-order interpretations of TRS

- Defined in the 70s for showing TRS termination:
- $\forall b$ of arity $n,(b): \mathbb{N}^{n} \rightarrow^{\uparrow} \mathbb{N}$
- $\forall I \rightarrow r \in R,(I)>(r)$
additive: for any constructor symbol $c,(c)(X)=X+k, \in \mathbb{N}$.
Let $P l_{\text {add }}$ be the set of functions computed by TRS admitting an additive polynomial interpretation.

Theorem (Bonfante et al.)

$$
P I_{a d d} \equiv F P T I M E
$$

First-order interpretations of TRS

Example

$$
\begin{aligned}
\text { double }(\epsilon) & \rightarrow \epsilon \\
\text { double }(s(x)) & \rightarrow s(s(\text { double }(x))
\end{aligned}
$$

First-order interpretations of TRS

Example

$$
\begin{aligned}
\text { double }(\epsilon) & \rightarrow \epsilon \\
\text { double }(s(x)) & \rightarrow s(s(\text { double }(x))
\end{aligned}
$$

$$
(\epsilon)=0,(s)(X)=X+1,(\text { double })(X)=3 X+1
$$

First-order interpretations of TRS

Example

$$
\begin{gathered}
\text { double }(\epsilon) \rightarrow \epsilon \\
\text { double }(s(x)) \rightarrow s(s(\text { double }(x)) \\
(\epsilon)=0,(s)(X)=X+1,(\text { double })(X)=3 X+1 \\
\text { (double } \epsilon)=1>0=(\epsilon) \\
\text { (double } s(x))=3 X+4>3 X+3=(s(s(\text { double }(x)))
\end{gathered}
$$

First-order interpretations of TRS

Example

$$
\begin{gathered}
\text { double }(\epsilon) \rightarrow \epsilon \\
\text { double }(s(x)) \rightarrow s(s(\text { double }(x)) \\
(\epsilon)=0,(s)(X)=X+1, \text { (double })(X)=3 X+1 \\
\text { (double } \epsilon)=1>0=(\epsilon) \\
\text { (double } s(x))=3 X+4>3 X+3=(s(s(\text { double }(x)))
\end{gathered}
$$

Additivity $\Rightarrow \llbracket d o u b l e \rrbracket: x \mapsto 2 x \in$ FPTIME

Higher-order interpretations of TRS: State of the art

- Termination:
- Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.

Higher-order interpretations of TRS: State of the art

- Termination:
- Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.
- Complexity:
- Férée et al. (2010) adapted interpretations to first-order stream programs for characterizing BFF $\left(\mathrm{BFF}_{2}\right)$ and $P(\mathbb{R})$.

Higher-order interpretations of TRS: State of the art

- Termination:
- Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.
- Complexity:
- Férée et al. (2010) adapted interpretations to first-order stream programs for characterizing $\mathrm{BFF}\left(\mathrm{BFF}_{2}\right)$ and $P(\mathbb{R})$.
- Baillot \& Dal Lago (2016) adapted interpretations to higher-order Simply Typed TRS for characterizing FPtime.
\rightarrow a first step towards a better expressivity

Higher-order language

Higher Order Programming Language

Definition (Functional Language)

$M:=$	x
\mid	c
\mid	op
	$M_{1} M_{2}$
	$\lambda x \cdot M$
\mid	case M of $c_{1} \rightarrow M_{1}\left\|c_{2} \rightarrow M_{2}\right\| \ldots \mid c_{n} \rightarrow M_{n}$
\mid	letRec $f=M$

+ Inductive Typing

Example

Example

letRec map $=\lambda g . \lambda x$. case \times of $\mathbf{c} y \mathbf{z} \rightarrow \mathbf{c}(\mathrm{~g} y)(\operatorname{map} \mathrm{g} z)$

$$
\text { nil } \rightarrow \text { nil }
$$

$\operatorname{List}(\alpha)::=\mathbf{n i l} \mid \mathbf{c} \alpha \operatorname{List}(\alpha)$
map: $(A \rightarrow B) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{List}(B)$

Semantics

Four kinds of reductions:

- β reduction:

$$
\lambda x \cdot M N \longrightarrow_{\beta} M\{N / x\}
$$

- case reduction:

$$
\text { case } c_{j} N_{j} \text { of } c_{1} \rightarrow M_{1}|\ldots| c_{n} \rightarrow M_{n} \longrightarrow_{\text {case }} M_{j} N_{j}
$$

- letRec reduction:

$$
\text { letRec } f=M \longrightarrow_{\text {letRec }} M\{\operatorname{letRec} f=M / f\}
$$

- Operator reduction (total functions over terms):

$$
o p ~ M \rightarrow_{o p} \llbracket o p \rrbracket(M)
$$

+ Left-most outermost reduction strategy

Higher-order interpretations

Interpretations of types

Definition

- $(b)=\overline{\mathbb{N}}=\mathbb{N} \cup\{T\}$
- $\left(T \rightarrow T^{\prime}\right)=(T) \rightarrow^{\uparrow}\left(T^{\prime}\right)$

Definition

- $f: A \rightarrow{ }^{\uparrow} B$ a monotonic function from A to B.
- $x<_{\overline{\mathbb{N}}} y$ iff $x<y$ or $y=\top$
- $f<_{A \rightarrow \uparrow B} g$ iff $\forall x \in A, f(x)<_{B} g(x)$

Example (map: $(A \rightarrow B) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{List}(B))$ (map) is in $\left(\overline{\mathbb{N}} \rightarrow^{\uparrow} \overline{\mathbb{N}}\right) \rightarrow^{\uparrow} \overline{\mathbb{N}} \rightarrow^{\uparrow} \overline{\mathbb{N}}$.

Lattices

$$
\begin{array}{cc}
\perp_{\overline{\mathbb{N}}}=0 & \top_{\overline{\mathbb{N}}}=\top \\
\perp_{\left(T \rightarrow T^{\prime}\right)}=\Lambda X^{(T)} \cdot \perp_{\left(T^{\prime}\right)} & \top_{\left(T T \rightarrow T^{\prime}\right)}=\Lambda X^{(T)} \cdot \top_{\left(T^{\prime}\right)} \\
\sqcup^{\left(T \rightarrow T^{\prime}\right)}(F, G)=\Lambda X^{(T)} \cdot \sqcup^{\left(T^{\prime}\right)}(F(X), G(X)) \\
\Pi^{\left(T \rightarrow T^{\prime}\right)}(F, G)=\Lambda X^{(T)} \cdot \sqcap^{\left(T^{\prime}\right)}(F(X), G(X))
\end{array}
$$

Lemma

For any type $T,((T), \leq, \sqcup, \sqcap, \top, \perp)$ is a complete lattice.

Interpretations of terms

$$
\begin{gathered}
n \oplus_{\overline{\mathbb{N}}}=\Lambda X .(n+X) \\
n \oplus_{\left(T \rightarrow T^{\prime}\right)}: \wedge F . \wedge X .\left(n \oplus_{\left.0 T^{\prime}\right)} F(X)\right)
\end{gathered}
$$

Definition (Interpretations)

$$
\begin{aligned}
(x) & =X \\
(c) & =1 \oplus\left(\wedge X_{1} \ldots \ldots \wedge X_{n} \cdot \sum_{i=1}^{n} X_{i}\right) \\
(M N) & =(M)(N)
\end{aligned}
$$

Interpretations of terms

$$
\begin{gathered}
n \oplus_{\overline{\mathbb{N}}}=\Lambda X .(n+X) \\
n \oplus_{\left(T \rightarrow T^{\prime}\right)}: \wedge F . \wedge X .\left(n \oplus_{\left.0 T^{\prime}\right)} F(X)\right)
\end{gathered}
$$

Definition (Interpretations)

$$
\begin{aligned}
(x) & =X \\
(c) & =1 \oplus\left(\Lambda X_{1} \ldots \ldots \Lambda X_{n} \cdot \sum_{i=1}^{n} X_{i}\right) \\
(M N D & =(M)(N) \\
(\lambda x \cdot M D & =1 \oplus(\Lambda(x) \cdot(M))
\end{aligned}
$$

Interpretations of terms

$$
\begin{gathered}
n \oplus_{\overline{\mathbb{N}}}=\Lambda X .(n+X) \\
n \oplus_{\left(T \rightarrow T^{\prime}\right)}: \Lambda F . \wedge X .\left(n \oplus_{\left(T^{\prime}\right)} F(X)\right)
\end{gathered}
$$

Definition (Interpretations)

$$
\begin{aligned}
(x) & =X \\
(c) & =1 \oplus\left(\Lambda X_{1} \ldots . \wedge X_{n} \cdot \sum_{i=1}^{n} X_{i}\right) \\
(M N) & =(M \mid(N) \\
(\lambda x \cdot M) & =1 \oplus(\Lambda(x) \cdot(M)) \\
\text { (case } \left.M \text { of } \ldots c_{i} \rightarrow M_{i} \ldots\right) & =1 \oplus \sqcup_{i}\left\{\left(\mid M_{i}\right) R_{i} \mid\left(\left(c_{i}\right) R_{i} \leq(M)\right\}\right.
\end{aligned}
$$

Interpretations of terms

$$
\begin{gathered}
n \oplus_{\overline{\mathbb{N}}}=\Lambda X .(n+X) \\
n \oplus_{\left(T \rightarrow T^{\prime}\right)}: \Lambda F . \wedge X .\left(n \oplus_{\left(T^{\prime}\right)} F(X)\right)
\end{gathered}
$$

Definition (Interpretations)

$$
\begin{aligned}
(x) & =X \\
(c) & =1 \oplus\left(\Lambda X_{1} \ldots . \wedge X_{n} \cdot \sum_{i=1}^{n} X_{i}\right) \\
(M N) & =(M)(N) \\
(\lambda x \cdot M D & =1 \oplus(\Lambda(x) \cdot(M)) \\
\text { (case Mof } \left.\ldots c_{i} \rightarrow M_{i} \ldots\right) & =1 \oplus \sqcup_{i}\left\{\left(M_{i}\right) R_{i} \mid\left(c_{i}\right) R_{i} \leq(M D\}\right. \\
\text { (letRec } f=M D & =\sqcap\{F \mid F \geq 1 \oplus(\Lambda(f) \cdot(M)) F\}
\end{aligned}
$$

Interpretations of terms

$$
\begin{gathered}
n \oplus_{\overline{\mathbb{N}}}=\Lambda X .(n+X) \\
n \oplus_{\left(T \rightarrow T^{\prime}\right)}: \Lambda F . \Lambda X .\left(n \oplus_{\left(T^{\prime}\right)} F(X)\right)
\end{gathered}
$$

Definition (Interpretations)

$$
\begin{aligned}
& (x)=x \\
& (c)=1 \oplus\left(\wedge X_{1} \ldots . \wedge X_{n} \cdot \sum_{i=1}^{n} X_{i}\right) \\
& (M N D=(M D)(N) \\
& (\lambda x \cdot M)=1 \oplus(\Lambda(x) \cdot(M)) \\
& \text { (case } \left.M \text { of } \ldots c_{i} \rightarrow M_{i} \ldots\right)=1 \oplus \sqcup_{i}\left\{\left(M_{i}\right) R_{i} \mid\left(c_{i}\right) R_{i} \leq(M D\}\right. \\
& (\text { letRec } f=M)=\sqcap\{F \mid F \geq 1 \oplus(\Lambda(f) \cdot(M)) F\} \\
& (o p \mathrm{M}) \geq(\llbracket \circ p \rrbracket(\mathrm{M}) \mathrm{D}
\end{aligned}
$$

Properties of interpretations

Theorem

Any term M has an interpretation.
Knaster-Tarski: Ifp $(\Lambda X .1 \oplus((\wedge(f) .(M D) X))$

Lemma

If $M \longrightarrow N$, then $(M) \geq(N)$.
If $M \longrightarrow{ }_{\alpha} N, \alpha \neq o p$, then $(M)>(N)$.

Lemma

If $M:: B$ and $(M) \neq \top$ then M terminates in time $O((M))$.

Example of Interpretation

(letRec map $=\lambda g . \lambda x$. case x of $\mathbf{c} y z \rightarrow \mathbf{c}(g y)($ map $g z) \mid n i l \rightarrow$ nil $)$ =. .
:
= ...
$=\sqcap\{F \mid F \geq 5 \oplus(\wedge G . \wedge X . \sqcup\{((G Y) \oplus(F G Z)) \mid X \geq 1 \oplus Y \oplus Z\}\}$
with 1 (letRec), 2 (Lambda), 1 (Case), 2 (Cons c), 2 (Cons nil)

Relaxing interpretations

$$
\begin{aligned}
& \text { (letRec map }=\lambda g . \lambda x . \text { case } \times \text { of } \mathbf{c} y z \rightarrow \mathbf{c}(g y)(\text { map } g z)) \\
& =\Pi\{F \mid F \geq 5 \oplus(\Lambda G . \wedge X . \sqcup\{((G Y) \oplus(F G Z)) \mid X \geq 1 \oplus Y \oplus Z\}\}
\end{aligned}
$$

Relaxing interpretations

$$
\begin{aligned}
& \text { (letRec map }=\lambda g . \lambda x . \text { case } x \text { of } \mathbf{c} y z \rightarrow \mathbf{c}(g y)(\text { map } g z)) \\
& =\Pi\{F \mid F \geq 5 \oplus(\Lambda G . \wedge X . \sqcup\{((G Y) \oplus(F G Z)) \mid X \geq 1 \oplus Y \oplus Z\}\} \\
& \leq \Pi\{F \mid F \geq 5 \oplus(\Lambda G . \wedge X .((G(X-1)) \oplus(F G(X-1))))\} \\
& \text { (constraint upper bound) }
\end{aligned}
$$

Relaxing interpretations

(letRec map $=\lambda g . \lambda x$. case x of $\mathbf{c} y z \rightarrow \mathbf{c}(g y)($ map $g z))$
$=\sqcap\{F \mid F \geq 5 \oplus(\wedge G . \wedge X . \sqcup\{((G Y) \oplus(F G Z)) \mid X \geq 1 \oplus Y \oplus Z\}\}$
$\leq \Pi\{F \mid F \geq 5 \oplus(\wedge G . \wedge X .((G(X-1)) \oplus(F G(X-1))))\}$
(constraint upper bound)
$\leq \wedge G . \wedge X .(5+G X)) \times X$
(min upper bound)

A characterization of BFF_{i}

BFF_{i}

A BTLP is a non-recursive and well-formed procedure P defined by:

$$
\begin{aligned}
P & ::=v^{\tau_{1} \times \ldots \times \tau_{n} \rightarrow \mathbb{N}}\left(v_{1}^{\tau_{1}}, \ldots, v_{n}^{\tau_{n}}\right) P^{*} V l^{*} \text { Return } v_{r}^{\mathbb{N}} \text { End } \\
V & ::=\text { var } v_{1}^{\mathbb{N}}, \ldots, v_{n}^{\mathbb{N}} ; \\
l & ::=v^{\mathbb{N}}:=E ; \mid \text { Loop } v_{0}^{\mathbb{N}} \text { with } v_{1}^{\mathbb{N}} \text { do } l^{*} \text { EndLoop ; } \\
E & ::=1\left|v^{\mathbb{N}}\right| v_{0}^{\mathbb{N}}+v_{1}^{\mathbb{N}}\left|v_{0}^{\mathbb{N}}-v_{1}^{\mathbb{N}}\right| v_{0}^{\mathbb{N}} \# v_{1}^{\mathbb{N}} \mid \\
& \quad v^{\tau_{1} \times \ldots \times \tau_{n} \rightarrow \mathbb{N}}\left(A_{1}^{\tau_{1}}, \ldots, A_{n}^{\tau_{n}}\right) \\
A & ::=v \mid \lambda v_{1}, \ldots, v_{n} . v\left(v_{1}^{\prime} \ldots, v_{m}^{\prime}\right) \quad \text { with } v \notin\left\{v_{1}, \ldots, v_{n}\right\}
\end{aligned}
$$

$$
\operatorname{order}(b)=0 \quad \operatorname{order}\left(T \rightarrow T^{\prime}\right)=\max \left(\operatorname{order}(T)+1, \operatorname{order}\left(T^{\prime}\right)\right)
$$

BFF_{i} is the class of order i functionals computable by a BTLP program.

Higher-order polynomial

$$
\begin{gathered}
P_{1}::=c \in \mathbb{N}\left|X_{0}\right| P_{1}+P_{1} \mid P_{1} \times P_{1} \\
P_{i+1}::=P_{i}\left|P_{i+1}+P_{i+1}\right| P_{i+1} \times P_{i+1} \mid X_{i}\left(P_{i}\right)
\end{gathered}
$$

Definition

Let $F P_{i}, i>0$, be the class of polynomial functionals at order i that consist in functionals computed by closed terms M such that:

- $\operatorname{order}(M)=i$
- (M) is bounded by an order i polynomial $\left(\exists P_{i},(M) \leq P_{i}\right)$.

Results

Define the Safe Feasible Functionals at order i, SFF_{i} by:

$$
\begin{aligned}
S F F_{1} & =B F F_{1} \\
\forall i \geq 1, S F F_{i+1} & =B F F_{i+1 \mid S F F_{i}}
\end{aligned}
$$

Theorem (Hainry Péchoux)
For any order $i, F P_{i}=S F F_{i}$.
In particular, $F P_{1}$ is FP time and $F P_{2}$ is BFF with FP time oracles.

Conclusion

Conclusion

Results

- An interpretation theory for higher-order functional languages
- A characterization of well-known classes: BFF_{i}

Issues and future work

- BFF_{i} is known to be restricted
\rightarrow see Férée's phD manuscript (2014)
- The interpretation synthesis problem is very hard.
- Interpretations for complexity analysis of real operators and real-based languages.
- Adapt the results to space: does it make sense?
- Adapt ICC techniques to characterize $P(\mathbb{R})$.

