
Higher-order Interpretations for Higher-order
Complexity

Emmanuel Hainry & Romain Péchoux
LPAR, 11 may 2017

CNRS, INRIA, Université de Lorraine & LORIA, Nancy, France

1

Introduction

First-order computability and complexity

• Computability is well understood:
• Definitions, hierarchies (Turing degree)
• Church-Turing’s thesis

• Computational Complexity is well understood:
• Definitions, classes
• Various characterizations:

• machine based characterizations
• machine independent characterizations

→ Implicit Computational Complexity

2

Higher-order computability and complexity

• Computability is (well) understood:
• Order 2 = computations over reals.
• No Church-Turing’s thesis!

• General Purpose Analog Computer by Shannon,
• Blum-Shub-Smale model,
• Computable Analysis (CA) by Weihrauch,
• Oracle TM, ...

• Complexity is not well understood.
• Polytime complexity on OTM = Basic Feasible

Functions (BFF) by Constable, Melhorn
• Polytime complexity in CA = P(R) by Ko
• No homogeneous theory for higher-order:

P(R) 6= BFF

3

Higher-order computability and complexity

• Computability is (well) understood:
• Order 2 = computations over reals.
• No Church-Turing’s thesis!

• General Purpose Analog Computer by Shannon,
• Blum-Shub-Smale model,
• Computable Analysis (CA) by Weihrauch,
• Oracle TM, ...

• Complexity is not well understood.
• Polytime complexity on OTM = Basic Feasible

Functions (BFF) by Constable, Melhorn
• Polytime complexity in CA = P(R) by Ko
• No homogeneous theory for higher-order:

P(R) 6= BFF

3

Objectives of this talk:

• not developping a new complexity theory for higher-order,
• adapting first-order tools for program complexity analysis,
• validating the theory by capturing existing higher-order
complexity classes

Framework:

• tool = (polynomial) interpretations
• target = BFFi , the Basic Feasible Functionals at any order.

4

Objectives of this talk:

• not developping a new complexity theory for higher-order,
• adapting first-order tools for program complexity analysis,
• validating the theory by capturing existing higher-order
complexity classes

Framework:

• tool = (polynomial) interpretations
• target = BFFi , the Basic Feasible Functionals at any order.

4

First-order interpretations

First-order interpretations of TRS

• Defined in the 70s for showing TRS termination:
• ∀b of arity n, LbM : Nn →↑ N
• ∀l → r ∈ R, LlM > LrM

additive: for any constructor symbol c, LcM(X) = X + k, ∈ N.

Let PIadd be the set of functions computed by TRS admitting an
additive polynomial interpretation.

Theorem (Bonfante et al.)

PIadd ≡ FPTIME

5

First-order interpretations of TRS

Example

double(ε)→ ε

double(s(x))→ s(s(double(x))

LεM = 0, LsM(X) = X + 1, LdoubleM(X) = 3X + 1

Ldouble εM = 1 > 0 = LεM

Ldouble s(x)M = 3X + 4 > 3X + 3 = Ls(s(double(x))M

Additivity ⇒ [[double]] : x 7→ 2x ∈ FPTIME

6

First-order interpretations of TRS

Example

double(ε)→ ε

double(s(x))→ s(s(double(x))

LεM = 0, LsM(X) = X + 1, LdoubleM(X) = 3X + 1

Ldouble εM = 1 > 0 = LεM

Ldouble s(x)M = 3X + 4 > 3X + 3 = Ls(s(double(x))M

Additivity ⇒ [[double]] : x 7→ 2x ∈ FPTIME

6

First-order interpretations of TRS

Example

double(ε)→ ε

double(s(x))→ s(s(double(x))

LεM = 0, LsM(X) = X + 1, LdoubleM(X) = 3X + 1

Ldouble εM = 1 > 0 = LεM

Ldouble s(x)M = 3X + 4 > 3X + 3 = Ls(s(double(x))M

Additivity ⇒ [[double]] : x 7→ 2x ∈ FPTIME

6

First-order interpretations of TRS

Example

double(ε)→ ε

double(s(x))→ s(s(double(x))

LεM = 0, LsM(X) = X + 1, LdoubleM(X) = 3X + 1

Ldouble εM = 1 > 0 = LεM

Ldouble s(x)M = 3X + 4 > 3X + 3 = Ls(s(double(x))M

Additivity ⇒ [[double]] : x 7→ 2x ∈ FPTIME

6

Higher-order interpretations of TRS: State of the art

• Termination:

• Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.

• Complexity:

• Férée et al. (2010) adapted interpretations to first-order
stream programs for characterizing BFF (BFF2) and P(R).

• Baillot & Dal Lago (2016) adapted interpretations to
higher-order Simply Typed TRS for characterizing FPtime.

→ a first step towards a better expressivity

7

Higher-order interpretations of TRS: State of the art

• Termination:

• Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.

• Complexity:

• Férée et al. (2010) adapted interpretations to first-order
stream programs for characterizing BFF (BFF2) and P(R).

• Baillot & Dal Lago (2016) adapted interpretations to
higher-order Simply Typed TRS for characterizing FPtime.

→ a first step towards a better expressivity

7

Higher-order interpretations of TRS: State of the art

• Termination:

• Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.

• Complexity:

• Férée et al. (2010) adapted interpretations to first-order
stream programs for characterizing BFF (BFF2) and P(R).

• Baillot & Dal Lago (2016) adapted interpretations to
higher-order Simply Typed TRS for characterizing FPtime.

→ a first step towards a better expressivity

7

Higher-order language

Higher Order Programming Language

Definition (Functional Language)

M := x
| c
| op
| M1 M2

| λx .M
| case M of c1 → M1|c2 → M2|...|cn → Mn

| letRec f = M

+ Inductive Typing

8

Example

Example
letRec map = λg.λx.case x of c y z → c (g y) (map g z)

| nil → nil

List(α) ::= nil | c α List(α)

map: (A→ B)→ List(A)→ List(B)

9

Semantics

Four kinds of reductions:

• β reduction:
λx .M N −→β M{N/x}

• case reduction:

case cjNj of c1 → M1|...|cn → Mn −→case Mj Nj

• letRec reduction:

letRec f = M −→letRec M{letRec f = M/f }

• Operator reduction (total functions over terms):

op M →op [[op]](M)

+Left-most outermost reduction strategy

10

Higher-order interpretations

Interpretations of types

Definition

• LbM = N̄ = N ∪ {>}
• LT → T ′M = LT M→↑ LT ′M

Definition

• f : A→↑ B a monotonic function from A to B.
• x <N̄ y iff x < y or y = >
• f <A→↑B g iff ∀x ∈ A, f (x) <B g(x)

Example (map: (A→ B)→ List(A)→ List(B))
LmapM is in (N̄→↑ N̄)→↑ N̄→↑ N̄.

11

Lattices

⊥N̄ = 0 >N̄ = >
⊥LT→T ′M = ΛX LT M.⊥LT ′M >LT→T ′M = ΛX LT M.>LT ′M

tLT→T ′M(F ,G) = ΛX LT M. tLT ′M (F (X),G(X))
uLT→T ′M(F ,G) = ΛX LT M. uLT ′M (F (X),G(X))

Lemma
For any type T , (LT M,≤,t,u,>,⊥) is a complete lattice.

12

Interpretations of terms

n⊕N̄ = ΛX .(n + X)

n⊕LT→T ′M : ΛF .ΛX .(n ⊕LT ′M F (X))

Definition (Interpretations)

LxM = X
LcM = 1⊕ (ΛX1.ΛXn.

∑n
i=1 Xi)

LM NM = LMMLNM

Lλx .MM = 1⊕ (ΛLxM.LMM)
Lcase M of . . . ci → Mi . . .M = 1⊕ ti{LMiMRi | LciMRi ≤ LMM}

LletRec f = MM = u{F | F ≥ 1⊕(ΛLf M.LM)MF}

Lop MM ≥ LJopK(M)M

13

Interpretations of terms

n⊕N̄ = ΛX .(n + X)

n⊕LT→T ′M : ΛF .ΛX .(n ⊕LT ′M F (X))

Definition (Interpretations)

LxM = X
LcM = 1⊕ (ΛX1.ΛXn.

∑n
i=1 Xi)

LM NM = LMMLNM
Lλx .MM = 1⊕ (ΛLxM.LMM)

Lcase M of . . . ci → Mi . . .M = 1⊕ ti{LMiMRi | LciMRi ≤ LMM}
LletRec f = MM = u{F | F ≥ 1⊕(ΛLf M.LM)MF}

Lop MM ≥ LJopK(M)M

13

Interpretations of terms

n⊕N̄ = ΛX .(n + X)

n⊕LT→T ′M : ΛF .ΛX .(n ⊕LT ′M F (X))

Definition (Interpretations)

LxM = X
LcM = 1⊕ (ΛX1.ΛXn.

∑n
i=1 Xi)

LM NM = LMMLNM
Lλx .MM = 1⊕ (ΛLxM.LMM)

Lcase M of . . . ci → Mi . . .M = 1⊕ ti{LMiMRi | LciMRi ≤ LMM}

LletRec f = MM = u{F | F ≥ 1⊕(ΛLf M.LM)MF}

Lop MM ≥ LJopK(M)M

13

Interpretations of terms

n⊕N̄ = ΛX .(n + X)

n⊕LT→T ′M : ΛF .ΛX .(n ⊕LT ′M F (X))

Definition (Interpretations)

LxM = X
LcM = 1⊕ (ΛX1.ΛXn.

∑n
i=1 Xi)

LM NM = LMMLNM
Lλx .MM = 1⊕ (ΛLxM.LMM)

Lcase M of . . . ci → Mi . . .M = 1⊕ ti{LMiMRi | LciMRi ≤ LMM}
LletRec f = MM = u{F | F ≥ 1⊕(ΛLf M.LM)MF}

Lop MM ≥ LJopK(M)M

13

Interpretations of terms

n⊕N̄ = ΛX .(n + X)

n⊕LT→T ′M : ΛF .ΛX .(n ⊕LT ′M F (X))

Definition (Interpretations)

LxM = X
LcM = 1⊕ (ΛX1.ΛXn.

∑n
i=1 Xi)

LM NM = LMMLNM
Lλx .MM = 1⊕ (ΛLxM.LMM)

Lcase M of . . . ci → Mi . . .M = 1⊕ ti{LMiMRi | LciMRi ≤ LMM}
LletRec f = MM = u{F | F ≥ 1⊕(ΛLf M.LM)MF}

Lop MM ≥ LJopK(M)M
13

Properties of interpretations

Theorem
Any term M has an interpretation.

Knaster-Tarski: lfp(ΛX .1⊕ ((ΛLf M.LMM)X))

Lemma
If M −→ N, then LMM ≥ LNM.

If M −→α N, α 6= op, then LMM > LNM.

Lemma
If M :: B and LMM 6= > then M terminates in time O(LMM).

14

Example of Interpretation

LletRec map = λg .λx .case x of c y z → c (g y) (map g z)|nil→ nilM
= . . .

...
= . . .

= u{F | F ≥ 5⊕ (ΛG .ΛX . t {((G Y)⊕ (F G Z))| X ≥ 1⊕ Y ⊕ Z}}

with 1 (letRec), 2 (Lambda), 1 (Case), 2 (Cons c), 2 (Cons nil)

15

Relaxing interpretations

LletRec map = λg .λx .case x of c y z → c (g y) (map g z)M

= u{F | F ≥ 5⊕ (ΛG .ΛX . t {((G Y)⊕ (F G Z))| X ≥ 1⊕ Y ⊕ Z}}

≤ u{F | F ≥ 5⊕ (ΛG .ΛX .((G (X − 1))⊕ (F G (X − 1))))}
(constraint upper bound)

≤ ΛG .ΛX .(5 + G X))× X
(min upper bound)

16

Relaxing interpretations

LletRec map = λg .λx .case x of c y z → c (g y) (map g z)M

= u{F | F ≥ 5⊕ (ΛG .ΛX . t {((G Y)⊕ (F G Z))| X ≥ 1⊕ Y ⊕ Z}}

≤ u{F | F ≥ 5⊕ (ΛG .ΛX .((G (X − 1))⊕ (F G (X − 1))))}
(constraint upper bound)

≤ ΛG .ΛX .(5 + G X))× X
(min upper bound)

16

Relaxing interpretations

LletRec map = λg .λx .case x of c y z → c (g y) (map g z)M

= u{F | F ≥ 5⊕ (ΛG .ΛX . t {((G Y)⊕ (F G Z))| X ≥ 1⊕ Y ⊕ Z}}

≤ u{F | F ≥ 5⊕ (ΛG .ΛX .((G (X − 1))⊕ (F G (X − 1))))}
(constraint upper bound)

≤ ΛG .ΛX .(5 + G X))× X
(min upper bound)

16

A characterization of BFFi

BFFi

A BTLP is a non-recursive and well-formed procedure P defined by:

P ::=vτ1×...×τn→N(vτ1
1 , . . . , vτn

n)P∗VI∗ Return vN
r End

V ::=var vN
1 , . . . , vN

n ;
I ::=vN := E ; | Loop vN

0 with vN
1 do I∗ EndLoop ;

E ::=1 | vN | vN
0 + vN

1 | vN
0 − vN

1 | vN
0 #vN

1 |
vτ1×...×τn→N(Aτ1

1 , . . . ,Aτn
n)

A ::=v | λv1, . . . , vn.v(v ′1 . . . , v ′m) with v /∈ {v1, . . . , vn}

order(b) = 0 order(T → T ′) = max(order(T) + 1, order(T ′))
BFFi is the class of order i functionals computable by a BTLP
program.

17

Higher-order polynomial

P1 ::= c ∈ N|X0|P1 + P1|P1 × P1

Pi+1 ::= Pi |Pi+1 + Pi+1|Pi+1 × Pi+1|Xi (Pi)

Definition
Let FPi , i > 0, be the class of polynomial functionals at order i
that consist in functionals computed by closed terms M such that:

• order(M) = i
• LMM is bounded by an order i polynomial (∃Pi , LMM ≤ Pi).

18

Results

Define the Safe Feasible Functionals at order i , SFFi by:

SFF1 =BFF1,

∀i ≥ 1, SFFi+1 =BFFi+1�SFFi

Theorem (Hainry Péchoux)
For any order i, FPi = SFFi .

In particular, FP1 is FPtime and FP2 is BFF with FPtime oracles.

19

Conclusion

Conclusion

Results

• An interpretation theory for higher-order functional languages
• A characterization of well-known classes: BFFi

Issues and future work

• BFFi is known to be restricted
→ see Férée’s phD manuscript (2014)

• The interpretation synthesis problem is very hard.
• Interpretations for complexity analysis of real operators and
real-based languages.

• Adapt the results to space: does it make sense?
• Adapt ICC techniques to characterize P(R).

20

	Main
	Introduction
	First-order interpretations
	Higher-order language
	Higher-order interpretations
	A characterization of BFFi
	Conclusion

