Bunched hypersequent calculi for distributive substructural logics

Agata Ciabattoni and Revantha Ramanayake

Technische Universität Wien, Austria

LPAR-21: 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning

8-12 May 2017. Maun, Botswana

Preliminaries: proof calculi for intuitionistic logic up to relevant logic

► Sequent calculus for propositional intuitionistic logic lp (Gentzen 1935)

$$p\Rightarrow p \qquad \bot; \Gamma\Rightarrow D \qquad \Gamma\Rightarrow T \qquad \frac{\Gamma\Rightarrow D}{\Gamma; \Delta\Rightarrow D} \text{ weak}$$

$$\frac{\Gamma; \Delta; \Delta\Rightarrow D}{\Gamma; \Delta\Rightarrow D} \text{ ctr} \qquad \frac{\Gamma\Rightarrow A}{A\rightarrow B; \Gamma; \Delta\Rightarrow D} \rightarrow I \qquad \frac{A; \Gamma\Rightarrow B}{\Gamma\Rightarrow A\rightarrow B} \rightarrow r$$

$$\frac{A_1; A_2; \Gamma\Rightarrow D}{A_1 \land A_2; \Gamma\Rightarrow D} \land I \qquad \frac{\Gamma\Rightarrow A}{\Gamma\Rightarrow A\land B} \land r \qquad \frac{\Gamma\Rightarrow A_i}{\Gamma\Rightarrow A_1 \lor A_2} \lor r$$

$$\frac{\Gamma; A; B; \Delta\Rightarrow D}{\Delta; B; A; \Gamma\Rightarrow D} \text{ e} \qquad \frac{A; \Gamma\Rightarrow D}{A\lor B; \Gamma\Rightarrow D} \lor I$$

- ▶ \Rightarrow *A* is derivable in the calculus iff *A* \in Ip
- ► The antecedent is a semicolon-separated list of formulae
- ► The calculus has the subformula property: every formula in the premise is a subformula in the conclusion
- ► Aside. Permit multiple formula in succedent to get classical logic

Calculus for propositional intuitionistic logic lp (Gentzen 1935)

$$p \Rightarrow p \qquad \qquad \bot; \Gamma \Rightarrow D \qquad \Gamma \Rightarrow \tau \qquad \frac{\Gamma \Rightarrow D}{\Gamma; \Delta \Rightarrow D} \text{ weak}$$

$$\frac{\Gamma; \Delta; \Delta \Rightarrow D}{\Gamma; \Delta \Rightarrow D} \text{ ctr} \qquad \frac{\Gamma \Rightarrow A}{A \rightarrow B; \Gamma; \Delta \Rightarrow D} \rightarrow I \qquad \frac{A; \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow r$$

$$\frac{A_1; A_2; \Gamma \Rightarrow D}{A_1 \land A_2; \Gamma \Rightarrow D} \land I \qquad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \land B} \land r \qquad \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \lor A_2} \lor r$$

$$\frac{\Gamma; A; B; \Delta \Rightarrow D}{\Delta; B; A; \Gamma \Rightarrow D} \text{ e} \qquad \frac{A; \Gamma \Rightarrow D}{A \lor B; \Gamma \Rightarrow D} \lor I \qquad \frac{\Gamma \Rightarrow A}{\Gamma; \Delta \Rightarrow D} \text{ cut}$$

- ► Contrast with the Hilbert calculus which contains the rule of *modus ponens*: if A and $A \rightarrow B$, then B
- ► This rule violates subformula property
- ▶ Subformula property is critical for making arguments e.g.
- Consistency (⇒ ⊥ not derivable) and PSPACE-complexity
- ► Gentzen generalises *modus ponens* to cut rule and then proves his cut-elimination theorem

Substructural logics. The Lambek calculus with exchange FL_e

- \blacktriangleright Remove some of the properties of the structural connective to obtain substructural logics
- ▶ For FL_e, the rules of contraction and weakening have been deleted. This allows us to define distinct connectives \otimes and \wedge .

$$p \Rightarrow p \qquad \bot, \Gamma \Rightarrow D \qquad \Rightarrow 1 \qquad \Gamma \Rightarrow \tau \qquad \frac{A_1, A_2, \Gamma \Rightarrow D}{A_1 \otimes A_2, \Gamma \Rightarrow D} \otimes I$$

$$\frac{\Gamma \Rightarrow A \qquad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes r \qquad \frac{\Gamma \Rightarrow A \qquad B, \Delta \Rightarrow D}{A \Rightarrow B, \Gamma, \Delta \Rightarrow D} \Rightarrow I \qquad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \Rightarrow B} \Rightarrow r$$

$$\frac{A_i, \Gamma \Rightarrow D}{A_1 \land A_2, \Gamma \Rightarrow D} \land I \qquad \frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} \land r \qquad \frac{\Gamma, A, B, \Delta \Rightarrow D}{\Delta, B, A, \Gamma \Rightarrow D} \in$$

$$\frac{A, \Gamma \Rightarrow D \qquad B, \Gamma \Rightarrow D}{A \lor B, \Gamma \Rightarrow D} \lor I \qquad \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \lor A_2} \lor r$$

- ► The antecedent is a comma-separated list of formulae
- ► (We could even delete the exchange rule and/or consider non-associativity)
- ▶ Once again, cut-elimination holds so we omit the cut rule

$A + (B \vee C) \rightarrow (A + B) \vee (A + C)$ is not deriveble

An observation: FL is not distributive

 $A \wedge (B \vee C) \Rightarrow (A \wedge B) \vee (A \wedge C)$ is not derivable

Proof: what rule can be applied to obtain this sequent? (4 possibilities)

$$\frac{A \Rightarrow (A \land B) \lor (A \land C)}{A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)} \land \mathsf{I}$$

$$\frac{B \lor C \Rightarrow (A \land B) \lor (A \land C)}{A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)} \land I$$

$$\frac{A \land (B \lor C) \Rightarrow A \land B}{A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)} \lor r$$

$$\frac{A \land (B \lor C) \Rightarrow A \land C}{A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)} \lor r$$

Observe that no premise is valid (or continue backward proof search)

► The need for distributivity arises e.g. in relevant logics.

A bunched calculus *s*DFL_e for DFL_e (Dunn 1974, Mints 1976)

$$p \Rightarrow p \qquad \bot, \Gamma \Rightarrow D \qquad \Rightarrow 1 \qquad \Gamma \Rightarrow \top \qquad \frac{\Gamma[A_1, A_2] \Rightarrow D}{\Gamma[A_1 \otimes A_2] \Rightarrow D} \otimes I$$

$$\frac{\Gamma \Rightarrow A \qquad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes \Gamma \frac{\Gamma \Rightarrow A \qquad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma, A \rightarrow B] \Rightarrow D} \rightarrow I \qquad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \Gamma$$

$$\frac{\Gamma[A_1; A_2] \Rightarrow D}{\Gamma[A_1 \land A_2] \Rightarrow D} \land I \qquad \frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} \land \Gamma \qquad \frac{\Sigma[\Gamma, \Delta] \Rightarrow A}{\Sigma[\Delta, \Gamma] \Rightarrow A} \text{ (m-e)}$$

$$\frac{\Gamma[A] \Rightarrow D \qquad \Gamma[B] \Rightarrow D}{\Gamma[A \lor B] \Rightarrow D} \lor I \qquad \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \lor A_2} \lor \Gamma \qquad \frac{\Sigma[(X, Y), Z] \Rightarrow A}{\Sigma[X, (Y, Z)] \Rightarrow A} \text{ (m-as)}$$

$$\frac{\Sigma[(X; Y); Z] \Rightarrow A}{\Sigma[X; (Y; Z)] \Rightarrow A} \text{ (a-as)} \qquad \frac{\Sigma[X; Y] \Rightarrow A}{\Sigma[X; Y] \Rightarrow A} \text{ (a-ex)} \qquad \frac{\Sigma[X] \Rightarrow A}{\Sigma[X; Y] \Rightarrow A} \text{ (a-w)}$$

- ▶ The antecedent has two structure connectives: comma and semicolon
- ▶ Comma → multiplicative connectives. Semicolon → additive connectives

Derivation of $A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$ **in** $sDFL_e$

$$\frac{A \Rightarrow A}{A; B \Rightarrow A} \qquad \frac{B \Rightarrow B}{A; B \Rightarrow B} \qquad \frac{A \Rightarrow A}{A; C \Rightarrow A} \qquad \frac{C \Rightarrow C}{A; C \Rightarrow C}$$

$$\frac{A; B \Rightarrow A \land B}{A; B \Rightarrow (A \land B) \lor (A \land C)} \qquad \frac{A; C \Rightarrow (A \land B) \lor (A \land C)}{A; C \Rightarrow (A \land B) \lor (A \land C)}$$

$$\frac{A; B \lor C \Rightarrow (A \land B) \lor (A \land C)}{A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)}$$

Bunched (hyper)sequent calculi for distributive substructural logics

- ► How can we construct calculi with the subformula property for axiomatic extensions of DFL_e?
- ► (Ciabattoni, Galatos, Terui 2008) develop a general method for (hyper)sequent calculi
- ▶ To extend these methods to bunched (hyper)sequent calculi we
 - (i) Interpret the additional structure and prove a cut-elimination theorem on this extended structure.
 - (ii) (This yields an algorithm for transforming an axiom into a structural rule)
- (iii) Characterise those axiom extensions that can be presented
- (iv) We also consider the special case of the logic of bunched implication BI (DFL_e with two implications defined on ⇒) where the above interpretation does not hold.
- ▶ Underlying aim: present logics in a simple extension of the sequent calculus, to permit applications of the calculus
- e.g. decidability, complexity, proof search, interpolation, standard completeness arguments

 $\frac{1, (1 \land (p \otimes q)) \Rightarrow p}{1 \Rightarrow (1 \land (p \otimes q)) \neg p}$

► $(1 \land (p \otimes q)) \multimap p \leadsto$ restricted weakening. Using invertible rules backwards: $1, (1; (p, q)) \Rightarrow p$

► So it suffices to derive $1, (1; (p, q)) \Rightarrow p$. In the presence of cut the following equivalences hold ('Ackermann's lemma')

$$1, (1; (p,q)) \Rightarrow p$$

$$\frac{X \Rightarrow p}{\varnothing_{a}, (\varnothing_{a}; (X,q)) \Rightarrow p}$$

$$\frac{X \Rightarrow p \qquad Y \Rightarrow q}{\varnothing_{a}, (\varnothing_{a}; (X,Y)) \Rightarrow p}$$

$$\frac{X \Rightarrow p \qquad Y \Rightarrow q \quad \Gamma[p] \Rightarrow B}{\varnothing_{a}, (\varnothing_{a}; (X,Y)) \Rightarrow B}$$

Example: A calculus for DFL_e + $(1 \land (p \otimes q)) \neg p$

► Apply all possible cuts to the premises (assuming termination) to get the equivalent rules

$$\frac{\Gamma[X] \Rightarrow B \quad Y \Rightarrow q}{\varnothing_{a}, (\varnothing_{a}; (X, Y)) \Rightarrow B} \qquad \frac{\Gamma[X] \Rightarrow B}{\varnothing_{a}, (\varnothing_{a}; (X, Y)) \Rightarrow B} r$$

▶ $s\mathsf{DFL}_e + r + cut$ is sound and complete for $\mathsf{DFL}_e + (1 \land (p \otimes q)) \multimap p$. By our cut-elimination theorem, so is $s\mathsf{DFL}_e + r$. This has the subformula property.

An example where the argument fails

$$\mathsf{DFL}_e + (p{\multimap}0) \lor ((p{\multimap}0){\multimap}0)$$

▶ Applying invertible rules to 1 \Rightarrow (p- \circ 0) \vee ((p- \circ 0)- \circ 0) we get

$$\emptyset_m \Rightarrow (p \multimap 0) \lor ((p \multimap 0) \multimap 0)$$

▶ Applying Ackermann lemma (below left), then invertible rule (∨I):

$$\frac{(p \multimap 0) \lor ((p \multimap 0) \multimap 0) \Rightarrow X}{\varnothing_m \Rightarrow X} \qquad \frac{(p \multimap 0) \Rightarrow X \qquad ((p \multimap 0) \multimap 0) \Rightarrow X}{\varnothing_m \Rightarrow X}$$

- ▶ The rule above right violates the subformula property...
- ▶ ... and yet there is no way to proceed. There are no invertible rules to apply
- ... and Ackermann's lemma does not simplify premises
- ▶ It seems that structural rules extensions of $sDFL_e$ are not expressive enough to present $DFL_e + (p \multimap 0) \lor ((p \multimap 0) \multimap 0)$
- ▶ We need to extend the sequent formalism further...

Bunched hypersequent calculus for $DFL_e + (p \multimap 0) \lor ((p \multimap 0) \multimap 0)$

► A natural extension of a sequent $\Gamma \Rightarrow A$ is to a non-empty set of sequents (Avron 1996, Pottingern 1983)

(l)

$$\Gamma_1 \Rightarrow A_1 \mid \Gamma_2 \Rightarrow A_2 \mid \dots \mid \Gamma_{n+1} \Rightarrow A_{n+1}$$

- ▶ Here we take the analogous extension of sDFL_e with hypersquent structure
- ▶ The hypersequent calculus *h*DFL_e is obtained from *s*DFL_e as follows:

Add a hypersequent context " $g \mid$ " to each rule. Also add rules manipulating the components

$$\frac{g|\Gamma, A \Rightarrow B}{g|\Gamma \Rightarrow A - \circ B} - \text{or} \qquad \frac{h|h|g}{h|g} EC \qquad \frac{g}{h|g} EC$$

- ► Prove soundness of hDFL_e wrt DFL_e interpreting | as disjunction
- ► (Contrast with FL_e : $\Gamma_1 \Rightarrow A_1 | \Gamma_2 \Rightarrow A_2 \rightsquigarrow ((\Gamma_1^I \multimap A_1) \land 1) \lor ((\Gamma_2^I \multimap A_2) \land 1))$
- ► Therefore the following is an equivalent calculus.

$$h\mathsf{DFL}_e + g \mid \mathsf{1} \Rightarrow p \multimap \mathsf{0} \mid \mathsf{1} \Rightarrow (p \multimap \mathsf{0}) \multimap \mathsf{0}$$

► Applying invertible rules:

$$g \mid 1 \Rightarrow p \multimap 0 \mid 1 \Rightarrow (p \multimap 0) \multimap 0$$
 $g \mid \varnothing_m, p \Rightarrow O_m \mid \varnothing_m, p \multimap 0 \Rightarrow O_m$

▶ Now repeatedly apply Ackermann's lemma to above right to get:

$$\begin{array}{ccc}
g \mid X \Rightarrow p & g \mid Y \Rightarrow p \rightarrow 0 \\
g \mid \varnothing_m, X \Rightarrow O_m \mid \varnothing_m, Y \Rightarrow O_m
\end{array}$$

▶ Applying invertible rules and all possible cuts we obtain a structural rule

$$\frac{g \mid X \Rightarrow p \qquad g \mid p, Y \Rightarrow O_m}{g \mid \varnothing_m, X \Rightarrow O_m \mid \varnothing_m, Y \Rightarrow O_m} \qquad \frac{g \mid X, Y \Rightarrow O_m}{g \mid \varnothing_m, X \Rightarrow O_m \mid \varnothing_m, Y \Rightarrow O_m} r$$

► hDFL $_e$ + r (via cut-elimination) is a calculus for DFL $_e$ + $(p \multimap 0) \lor ((p \multimap 0) \multimap 0)$

The substructural hierarchy over DFL_e

- ▶ We can characterise the extensions of DFL_e that can be presented
- ▶ Following (Ciabattoni, Galatos, Terui 2008), set \mathcal{N}_0^d and \mathcal{P}_0^d as the set of propositional variables, and define

$$\begin{split} \mathcal{P}^{d}_{n+1} & ::= 1 \mid \mathcal{N}^{d}_{n} \mid \mathcal{P}^{d}_{n+1} \otimes \mathcal{P}^{d}_{n+1} \mid \mathcal{P}^{d}_{n+1} \wedge \mathcal{P}^{d}_{n+1} \mid \mathcal{P}^{d}_{n+1} \vee \mathcal{P}^{d}_{n+1} \\ \mathcal{N}^{d}_{n+1} & ::= O_{m} \mid \mathcal{P}^{d}_{n} \mid \mathcal{N}^{d}_{n+1} \wedge \mathcal{N}^{d}_{n+1} \mid \mathcal{P}^{d}_{n+1} \multimap \mathcal{N}^{d}_{n+1} \end{split}$$

- ▶ The positive classes \mathcal{P}_i contain formulae whose most external connective is invertible on the left
- ▶ The negative classes N_i) contain formulae whose most external connective is invertible on the right

Theorem

Every extension of DFL_e by a disjunction of N_2^d axioms computes a structural rule extension of $hDFL_e$ when the cuts on the premises terminate.

The logic of bunched implications BI (O'Hearn and Pym, 1999)

- ▶ BI can be used for resource composition and systems modelling and as a propositional fragment of separation logic
- ▶ Bunched calculus: extend sDFL_e with an intuitionistic implication →

$$\frac{\Gamma \Rightarrow A \qquad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma; A \to B] \Rightarrow D} \to I \qquad \frac{A; \Gamma \Rightarrow B}{\Gamma \Rightarrow A \to B} \to r$$

- ▶ sBI has two implications: multiplicative \neg and \rightarrow , both defined wrt \Rightarrow
- ► Recall...

$$\frac{\Gamma \Rightarrow A \qquad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma, A \multimap B] \Rightarrow D} \multimap I \qquad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \multimap B} \multimap r$$

▶ Algebraic semantics: Heyting (intuitionistic) algebras with a commutative monoidal operation \otimes and residuated implication \multimap

i.e. $x \otimes y \leq z$ iff $x \leq y \multimap z$ where \leq is the Heyting partial order

A calculus for $BI + 1 \Rightarrow p \lor (p \to \bot)$ (BBI): an attempt (I)

- ► Boolean BI is the counterpart of BI with intuitionistic logic replaced by classical logic
- ▶ BBI is the propositional basis of separation logic (more widely used than BI)
- ▶ BBI is undecidable (Larchey-Wendling and Galmiche, 2010)
- ► We cannot extend BI by permitting multiple formulae in the succedent (analogous of LJ → LK) because the standard cut-elimination fails due to the two types of structural connectives in the antecedent
- ▶ Idea: add hypersequent structure to *s*BI to interpret as before:

$$1 \Rightarrow p \lor (p \to \bot) \qquad 1 \Rightarrow p \mid 1 \Rightarrow (p \to \bot)$$

- ► However: the two right implication rules do not permit a (formula) interpretation of ⇒
- ▶ If we cannot interpret ⇒ then we cannot interpret |
- So the obvious extension of the hDFL_e method to BBI fails.

A calculus for $Bl + 1 \Rightarrow p \lor (p \to \bot)$ (BBI): an attempt (II)

▶ Nevertheless we can consider the sequent consequences of the hypersequent calculus hBI + r for some structural rule r

$$\{\Gamma \Rightarrow A \mid \Gamma \Rightarrow A \text{ derivable in } hDFL_e + r\}$$

- ► Our proof of cut-elimination extends to structural rule extensions of hBI
- ▶ Idea: add a structural rule which derives desired sequent, use the subformula property to check the consistency of structural rule extensions
- ▶ It remains to | interpret wrt the semantics of BI (future work)
- ▶ Aside. Recent work (Ciabattoni, Galatos, Terui 2016) interprets | for (non-commutative) FL as a special disjunction built from 'interated conjugates'
- ► Can we find interesting resource interpretations for such logics? Can we regain decidability for BBI-like logics?