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Motivation

I Many automated reasoning systems use preprocessing techniques to
speed up the solving process.

I Before the actual solving starts, these techniques simplify a formula
without affecting its satisfiability.

I Most solvers operate on formulas in conjunctive normal form (CNF).

å CNF preprocessing is important.

I Successful CNF-preprocessing techniques in SAT and QSAT solving are
based on the notion of blocked clauses (Kullmann, 1999):

I Blocked-clause elimination speeds up SAT and (D)QBF solving.

I The winner of the SATRace 2015, abcdSAT, uses blocked-clause
decomposition as core technology.

I Addition of short blocked clauses can also improve performance.

å We lift the notion of a blocked clause to first-order logic.
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Main Contributions

I We lift the notion of a blocked clause to first-order logic (FOL)

I We introduce a version of blocked clauses for FOL with equality.

I We give a polynomial time algorithm for deciding whether a clause is
blocked.

I We implement blocked-clause elimination as a preprocessing
technique for first-order theorem provers.

I We evaluate the effectiveness for various provers on the TPTP
benchmark library.
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Outline

1. Background:
I Overview on preprocessing techniques.

I Blocked clauses in propositional logic.

2. Blocked clauses in first-order logic without equality

3. Blocked clauses in first-order logic with equality
(equality-blocked clauses)

4. Complexity of detecting blocked clauses.

5. Evaluation results for first-order blocked-clause elimination.



4/20

Preprocessing for Automated Provers

I Preprocessing methods simplify formulas.

I Given a CNF formula, they often remove or add redundant clauses.

I We call a clause redundant w.r.t. a formula if its addition or removal
maintians satisfiability equivalence.

I Examples:
I Tautological clauses are redundant in every formula.

I Clauses containing a pure literal are redundant

I As we will see, blocked clauses are redundant too.
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Blocked Clauses in Propositional Logic

I Intuitively, a clause C is blocked if all resolvents of C upon one of its
literals are tautologies.

Definition (Kullmann, 1999)

A clause C ∨ b is blocked by the literal b in a formula F if,
for every clause D ∨ b̄ ∈ F , the resolvent C ∨ D is a tautology.

I Example:

C : x ∨ y ∨ b

¬z ∨ x ∨ y

¬b ∨ ¬y

¬b ∨ ¬x

¬a ∨ z ∨ b

I Blocked clauses are redundant, so they can be safely removed/added.
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Why Blocked Clauses are Redundant

I To show: F \ {C} is satisfiable ⇔ F ∪ {C} is satisfiable.

I ⇐ is trivial.
I ⇒ (idea): “Repair” satisfying assignments of F \ {C}.

I Suppose C is blocked by b and there exists a satisfying assignment of
F \ {C} that falsifies C .

I Make C true by “flipping” the truth value of b.

I Clauses containing ¬b stay true.

C : x ∨ y ∨ b

¬z ∨ x ∨ y

¬b ∨ ¬y

¬b ∨ ¬x

¬a ∨ z ∨ y
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Blocked Clauses in First-Order Logic (Without Equality)

I What does “all resolvents upon a literal are tautologies” mean in
first-order logic?

Example (“binary resolvents” do not guarantee redundancy)

I Let C = P(x , y) ∨ P(y , x) and F = {¬P(u, v) ∨ ¬P(v , u)}
I There are two binary resolvents of C upon P(x , y):

1. P(v , u) ∨ ¬P(v , u) via resolution with ¬P(u, v)

2. P(u, v) ∨ ¬P(u, v) via resolution with ¬P(v , u)

I Both resolvents are tautologies but C is not redundant w.r.t. F .
I F is clearly satisfiable.

I F ∪ {C} is unsatisfiable: P(c, c) ∨ P(c, c) and ¬P(c, c) ∨ ¬P(c, c)
are inconsistent ground instances of clauses in F ∪ {C}.

å The problem is factoring: ¬P(u, v) and ¬P(v , u) unify.
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Blocked Clauses in First-Order Logic (Without Equality)

I Better approach: Take care of factoring.

Definition (L-resolvent)

Let C = L ∨ C and D = N1 ∨ · · · ∨ Nm ∨ D be clauses where
L, N̄1, . . . , N̄m are unifiable by an mgu σ.

Then, Cσ ∨ Dσ is called L-resolvent of C and D.

I Consider again C = P(x , y) ∨ P(y , x) and F = {¬P(u, v) ∨ ¬P(v , u)}
I For L = P(x , y), there are now three L-resolvents of C :

1. P(v , u) ∨ ¬P(v , u) via resolution with ¬P(u, v) (as before).

2. P(u, v) ∨ ¬P(u, v) via resolution with ¬P(v , u) (as before).

3. P(x , x) (not a tautology!) resolution with both ¬P(u, v) and ¬P(v , u).

Definition
A clause C ∨ L is blocked by L in a formula F if all L-resolvents of C ∨ L
with clauses in F \ {C ∨ L} are tautologies.
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Blocked Clauses Are Redundant

I Redundancy of blocked clauses can be shown via Herbrand’s Theorem:

Theorem
A formula F (without equality) is satisfiable iff every finite set of ground
instances of clauses in F is propositionally satisfiable.

I In propositional logic, we showed how satisfying assignments of
F \ {C} can be “repaired” to satisfy also C .

I In first-order logic, one can show that satisfying assignments for sets of
ground instances of clauses in F \ {C} can be repaired:

I Repaired assignments also satisfy ground instances of C .

I May need to iterate, finitely many times.

I (Self-resolutions do not need to be considered.)

å Blocked clauses are redundant in first-order logic (without equality).
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Blocked Clauses in First-Order Logic With Equality
I In FOL with equality, our definition does not guarantee redundancy:

Example

I Let C = P(a) and F = {a ≈ b,¬P(b)}
I There are no resolvents of C since P(a) and P(b) are not unifiable

(a and b are constants)

å C is blocked w.r.t. F .

I But F is satisfiable while F ∪ {C} is not:
I Every model of F must falsify P(a).

I Idea [KK2016]: Flatten literals before resolution:
I P(a) −→ x 6≈ a ∨ P(x)

I ¬P(b) −→ y 6≈ b ∨ ¬P(y)

I Resolvent of x 6≈ a ∨ P(x) and x 6≈ a ∨ ¬P(y) upon P(x):

x 6≈ a ∨ x 6≈ b,

is not valid.
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Blocked Clauses in First-Order Logic With Equality

Definition (Flattening)

Let C = L(t1, . . . , tn) ∨ C ′. Flattening the literal L(t1, . . . , tn) in C yields
the clause C− =

∨
1≤i≤n xi 6≈ ti ∨ L(x1, . . . , xn) ∨ C ′, with xi , . . . , xn

being fresh variables not occurring in C .

I A clause C ∨ L is then equality-blocked if, after flattening all literals
with the same predicate as L, all flat L-resolvents are valid.

I Redundancy can be shown using a variant of Herbrand’s Theorem
with equality axioms.

I Flipping whole equivalence classes!
I (cannot block on the equality literals)

å Equality-blocked clauses are redundant in first-order logic with
equality.
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Outline

1. Background:
I Overview on preprocessing techniques.

I Blocked clauses in propositional logic.

2. Blocked clauses in first-order logic without equality

3. Blocked clauses in first-order logic with equality
(equality-blocked clauses)

4. Complexity of detecting blocked clauses.

5. Evaluation results for first-order blocked-clause elimination.
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Complexity of Detecting Blocked Clauses
The easy part:

I Given a candidate clause C = L ∨ C ′ there are only linearly many
partner clauses D ∈ F \ {C} to check for L-resolvents.

A single flat L-resolvent check (the ≈ case)

I Computing a flat L-resolvent is easy (take the obvious small mgu).
I R is valid iff ¬∀R is unsatisfiable.
I ¬∀R is a ground equational conjunction: use congruence closure.

A single L-resolvent check (blocked in the absence of ≈)
Rely on unification closure to avoid the risk of exponential unifiers.

The Main Challenge
Given C = L ∨ C ′ and D = N1 ∨ · · · ∨ Nn ∨ D ′ such that L, N̄1, . . . , N̄n

unify, there are 2n − 1 L-resolvents whose validity should be checked!
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Testing Validity of all L-resolvents

Algorithm 1:
Input:

Candidate C = L ∨ C ′ and a partner D = N1 ∨ . . . ∨ Nn ∨ D ′,
where N1, . . . ,Nn are all the literals of D which pairwise unify with L̄

Output:
Are all L-resolvents of L ∨ C ′ and D valid?

1: for k ← 1, . . . , n do
2: N ← {Nk}
3: while L unifiable with literals N̄ via an mgu σ do
4: K ← all pairs of complementary literals in C ′σ ∨ (D \ N)σ
5: if K = ∅ then
6: return NO
7: if every pair of complementary literals in K contains a literal Niσ then
8: N ← N ∪ {Ni | Niσ is part of a complementary pair}
9: else

10: break (the while loop)
11: return YES
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Blocked Clause Elimination (BCE) – Implementation
Implemented in automated theorem prover Vampire

I as an optional preprocessing step: -bce on
I blocked / equality-blocked based on the presence of ≈
I Vampire as a clausifier: –mode clausify

The main loop

I index clauses by predicate and polarity
I priority queue of candidates (C , L); the least effort first
I if candidate (C , L) and partner D do not yield a valid L-resolvent

store (C , L) with D for potential later “resurrection”

Single candidate-partner check

I cheap but safe approximation of Algorithm 1
I cheap approximation of congruence closure reasoning
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Do Blocked Clauses Occur in Practice?

The setup:
I All first-order benchmarks from TPTP 6.4.0:

I 15 942 problems: 8044 general FO, 7898 CNF
I 73% with equality

I 300 s for parsing, (clausification), and blocked-clause elimination

Results

I Blocked-clause elimination finished on all but one problems.

I Average time: 0.238 s, median 0.001 s.

I 11.72% of the collective total of 299 379 591 clauses are blocked.

I 59% of problems contain a blocked clause.

I In more than 1000 problems, 25% of the clauses could be eliminated.

I 113 satisfiable formulas directly solved by blocked-clause elimination.
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Impact of BCE on Performance

The setup:
I 7619 TPTP problems where BCE eliminates at least one clause
I provers from CASC 2016, but fixed a single strategy
I 300 s for both BCE and proving

Strategies for proving theorems (CASC 2016 FOF champions)
unsatisfiable satisfiable total

Vampire 3172 −28 +40 458 −0 +5 3630 −28 +45
E 3097 −20 +27 363 −1 +9 3460 −21 +36
CVC4 2930 −18 +37 9 −0 +68 2939 −18 +105

Satisfiability checking strategies (CASC 2016 FNT champions)
satisfiable unsatisfiable total

Vampire 531 −0 +24 719 −4 +5 1250 −4 +29
iProver 558 −0 +1 755 −6 +4 1313 −6 +5
CVC4 489 −1 +28 1724 −24 +20 2213 −25 +48
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Mock Portfolio Construction

Portfolios?

I Provers usually employ many strategies to prove a conjecture.
I A new technique may interact differently with each of the strategies.

The setup:
I 302 satisfiable TPTP problems previous established hard for

Vampire.
I 50 000 pairs of randomized strategies (w/o BCE, with BCE).
I 120 s time limit

Results

I w/o BCE: 6766 successes, with BCE: 8414 successes
I only w/o BCE: 148, only with BCE: 1796
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Conclusion

Summary

I We lifted blocked clauses to first-order logic
(both without and with equality).

I Blockedness can be checked in polynomial time.

I We implemented blocked-clause elimination in Vampire.

I Encouraging experimental results.

Outlook

I Combine with other first-order preprocessing techniques
(such as predicate elimination [KK2016]).

I Lift other preprocessing techniques from SAT: [KS2017]

I Beyond elimination: addition and decomposition in FO?
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BCE and Unused Definition Elimination

Propositionally, BCE simulates UDE:

¬p ∨ ϕ p ∨ ¬ϕ ψ[p]

for any ¬p ∨ C ∈ CNF (ϕ) and p ∨ D ∈ CNF (¬ϕ) the resolvents

C ∨ D

are tautologies (unless we name “asymmetrically” inside ϕ)

This breaks down with quantifiers:

Example
Given a definition p(x) ≡ ∃y .q(x , y), trying to block

¬p(x) ∨ q(x , sk∃y .q(x,y)(x)) p(x) ∨ ¬q(x , y)
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