Blocked Clauses in First-Order Logic

Benjamin Kiesl¹, **Martin Suda**¹, Martina Seidl², Hans Tompits¹, and Armin Biere²

> ¹TU Wien, Vienna, Austria ²Johannes Kepler University, Linz, Austria

- Many automated reasoning systems use preprocessing techniques to speed up the solving process.
 - Before the actual solving starts, these techniques simplify a formula without affecting its satisfiability.

- Many automated reasoning systems use preprocessing techniques to speed up the solving process.
 - Before the actual solving starts, these techniques simplify a formula without affecting its satisfiability.
- Most solvers operate on formulas in conjunctive normal form (CNF).

► CNF preprocessing is important.

- Many automated reasoning systems use preprocessing techniques to speed up the solving process.
 - Before the actual solving starts, these techniques simplify a formula without affecting its satisfiability.
- Most solvers operate on formulas in conjunctive normal form (CNF).

CNF preprocessing is important.

Successful CNF-preprocessing techniques in SAT and QSAT solving are based on the notion of blocked clauses (Kullmann, 1999):

- Many automated reasoning systems use preprocessing techniques to speed up the solving process.
 - Before the actual solving starts, these techniques simplify a formula without affecting its satisfiability.
- Most solvers operate on formulas in conjunctive normal form (CNF).

CNF preprocessing is important.

- Successful CNF-preprocessing techniques in SAT and QSAT solving are based on the notion of blocked clauses (Kullmann, 1999):
 - Blocked-clause elimination speeds up SAT and (D)QBF solving.
 - The winner of the SATRace 2015, abcdSAT, uses blocked-clause decomposition as core technology.
 - Addition of short blocked clauses can also improve performance.

- Many automated reasoning systems use preprocessing techniques to speed up the solving process.
 - Before the actual solving starts, these techniques simplify a formula without affecting its satisfiability.
- Most solvers operate on formulas in conjunctive normal form (CNF).

CNF preprocessing is important.

- Successful CNF-preprocessing techniques in SAT and QSAT solving are based on the notion of blocked clauses (Kullmann, 1999):
 - Blocked-clause elimination speeds up SAT and (D)QBF solving.
 - The winner of the SATRace 2015, abcdSAT, uses blocked-clause decomposition as core technology.
 - Addition of short blocked clauses can also improve performance.
- ➡ We lift the notion of a blocked clause to first-order logic.

▶ We lift the notion of a blocked clause to first-order logic (FOL)

- ► We lift the notion of a blocked clause to first-order logic (FOL)
- ▶ We introduce a version of blocked clauses for FOL with equality.

- ▶ We lift the notion of a blocked clause to first-order logic (FOL)
- ► We introduce a version of blocked clauses for FOL with equality.
- We give a polynomial time algorithm for deciding whether a clause is blocked.

- ► We lift the notion of a blocked clause to first-order logic (FOL)
- ► We introduce a version of blocked clauses for FOL with equality.
- We give a polynomial time algorithm for deciding whether a clause is blocked.
- We implement blocked-clause elimination as a preprocessing technique for first-order theorem provers.

- ► We lift the notion of a blocked clause to first-order logic (FOL)
- ► We introduce a version of blocked clauses for FOL with equality.
- ► We give a polynomial time algorithm for deciding whether a clause is blocked.
- We implement blocked-clause elimination as a preprocessing technique for first-order theorem provers.
 - We evaluate the effectiveness for various provers on the TPTP benchmark library.

Outline

1. Background:

- Overview on preprocessing techniques.
- Blocked clauses in propositional logic.
- 2. Blocked clauses in first-order logic without equality
- 3. Blocked clauses in first-order logic with equality (*equality-blocked clauses*)
- 4. Complexity of detecting blocked clauses.
- 5. Evaluation results for first-order blocked-clause elimination.

- Preprocessing methods simplify formulas.
- Given a CNF formula, they often remove or add redundant clauses.

- Preprocessing methods simplify formulas.
- ► Given a CNF formula, they often remove or add redundant clauses.
- We call a clause redundant w.r.t. a formula if its addition or removal maintians satisfiability equivalence.

- Preprocessing methods simplify formulas.
- ► Given a CNF formula, they often remove or add redundant clauses.
- We call a clause redundant w.r.t. a formula if its addition or removal maintians satisfiability equivalence.
- Examples:
 - ► Tautological clauses are redundant in every formula.

- Preprocessing methods simplify formulas.
- ► Given a CNF formula, they often remove or add redundant clauses.
- We call a clause redundant w.r.t. a formula if its addition or removal maintians satisfiability equivalence.
- Examples:
 - ► Tautological clauses are redundant in every formula.
 - Clauses containing a pure literal are redundant

- Preprocessing methods simplify formulas.
- ► Given a CNF formula, they often remove or add redundant clauses.
- We call a clause redundant w.r.t. a formula if its addition or removal maintians satisfiability equivalence.
- Examples:
 - Tautological clauses are redundant in every formula.
 - Clauses containing a pure literal are redundant
 - As we will see, blocked clauses are redundant too.

► Intuitively, a clause *C* is blocked if all resolvents of *C* upon one of its literals are tautologies.

► Intuitively, a clause *C* is blocked if all resolvents of *C* upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \lor b$ is blocked by the literal b in a formula F if, for every clause $D \lor \overline{b} \in F$, the resolvent $C \lor D$ is a tautology.

► Intuitively, a clause *C* is blocked if all resolvents of *C* upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \vee b$ is blocked by the literal b in a formula F if, for every clause $D \vee \overline{b} \in F$, the resolvent $C \vee D$ is a tautology.

Example:

$$\neg z \lor x \lor y$$
$$\neg b \lor \neg y$$
$$\neg b \lor \neg x$$
$$\neg a \lor z \lor b$$

Intuitively, a clause C is blocked if all resolvents of C upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \vee b$ is blocked by the literal b in a formula F if, for every clause $D \vee \overline{b} \in F$, the resolvent $C \vee D$ is a tautology.

► Example:

Intuitively, a clause C is blocked if all resolvents of C upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \vee b$ is blocked by the literal b in a formula F if, for every clause $D \vee \overline{b} \in F$, the resolvent $C \vee D$ is a tautology.

► Example:

Intuitively, a clause C is blocked if all resolvents of C upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \vee b$ is blocked by the literal b in a formula F if, for every clause $D \vee \overline{b} \in F$, the resolvent $C \vee D$ is a tautology.

Example:

► Intuitively, a clause *C* is blocked if all resolvents of *C* upon one of its literals are tautologies.

Definition (Kullmann, 1999)

A clause $C \vee b$ is blocked by the literal b in a formula F if, for every clause $D \vee \overline{b} \in F$, the resolvent $C \vee D$ is a tautology.

► Example:

Blocked clauses are redundant, so they can be safely removed/added.

• To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.
 - Make C true by "flipping" the truth value of b.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.
 - Make C true by "flipping" the truth value of b.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.
 - ▶ Make C true by "flipping" the truth value of b.
 - ► Clauses containing ¬b stay true.

- To show: $F \setminus \{C\}$ is satisfiable $\Leftrightarrow F \cup \{C\}$ is satisfiable.
- \blacktriangleright \Leftarrow is trivial.
- ▶ \Rightarrow (idea): "Repair" satisfying assignments of $F \setminus \{C\}$.
 - Suppose C is blocked by b and there exists a satisfying assignment of F \ {C} that falsifies C.
 - Make C true by "flipping" the truth value of b.
 - ► Clauses containing ¬*b* stay true.

Blocked Clauses in First-Order Logic (Without Equality)

What does "all resolvents upon a literal are tautologies" mean in first-order logic? Blocked Clauses in First-Order Logic (Without Equality)

What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

• Let
$$C = P(x, y) \lor P(y, x)$$
 and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

Blocked Clauses in First-Order Logic (Without Equality)

What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

• Let
$$C = P(x, y) \lor P(y, x)$$
 and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

• There are two binary resolvents of C upon P(x, y):

1.
$$P(v, u) \lor \neg P(v, u)$$
 via resolution with $\neg P(u, v)$
What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

• Let
$$C = P(x, y) \lor P(y, x)$$
 and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

- There are two binary resolvents of C upon P(x, y):
 - 1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$
 - 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$

What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

- Let $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$
- There are two binary resolvents of C upon P(x, y):
 - 1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$
 - 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$
- ▶ Both resolvents are tautologies but *C* is not redundant w.r.t. *F*.
 - F is clearly satisfiable.
 - $F \cup \{C\}$ is unsatisfiable:

What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

• Let $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

• There are two binary resolvents of C upon P(x, y):

1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$

- 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$
- ▶ Both resolvents are tautologies but *C* is not redundant w.r.t. *F*.
 - F is clearly satisfiable.
 - F ∪ {C} is unsatisfiable: P(c, c) ∨ P(c, c) and ¬P(c, c) ∨ ¬P(c, c) are inconsistent ground instances of clauses in F ∪ {C}.

What does "all resolvents upon a literal are tautologies" mean in first-order logic?

Example ("binary resolvents" do not guarantee redundancy)

• Let $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

• There are two binary resolvents of C upon P(x, y):

1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$

- 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$
- ▶ Both resolvents are tautologies but *C* is not redundant w.r.t. *F*.
 - F is clearly satisfiable.
 - F ∪ {C} is unsatisfiable: P(c, c) ∨ P(c, c) and ¬P(c, c) ∨ ¬P(c, c) are inconsistent ground instances of clauses in F ∪ {C}.

The problem is factoring:
$$\neg P(u, v)$$
 and $\neg P(v, u)$ unify.

Better approach: Take care of factoring.

Definition (*L*-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ .

Better approach: Take care of factoring.

Definition (L-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ . Then, $C\sigma \lor D\sigma$ is called *L*-resolvent of *C* and *D*.

Better approach: Take care of factoring.

Definition (L-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ . Then, $C\sigma \lor D\sigma$ is called *L*-resolvent of *C* and *D*.

• Consider again $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$

Better approach: Take care of factoring.

Definition (L-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ . Then, $C\sigma \lor D\sigma$ is called *L*-resolvent of *C* and *D*.

- Consider again $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$
- For L = P(x, y), there are now three *L*-resolvents of *C*:
 - 1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$ (as before).

Better approach: Take care of factoring.

Definition (L-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ . Then, $C\sigma \lor D\sigma$ is called *L*-resolvent of *C* and *D*.

- Consider again $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$
- For L = P(x, y), there are now three *L*-resolvents of *C*:
 - 1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$ (as before).
 - 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$ (as before).

Better approach: Take care of factoring.

Definition (L-resolvent)

Let $C = L \lor C$ and $D = N_1 \lor \cdots \lor N_m \lor D$ be clauses where $L, \overline{N}_1, \ldots, \overline{N}_m$ are unifiable by an mgu σ . Then, $C\sigma \lor D\sigma$ is called *L*-resolvent of *C* and *D*.

- Consider again $C = P(x, y) \lor P(y, x)$ and $F = \{\neg P(u, v) \lor \neg P(v, u)\}$
- For L = P(x, y), there are now three *L*-resolvents of *C*:
 - 1. $P(v, u) \lor \neg P(v, u)$ via resolution with $\neg P(u, v)$ (as before).
 - 2. $P(u, v) \lor \neg P(u, v)$ via resolution with $\neg P(v, u)$ (as before).
 - 3. P(x,x) (not a tautology!) resolution with both $\neg P(u,v)$ and $\neg P(v,u)$.

Definition

A clause $C \vee L$ is blocked by L in a formula F if all L-resolvents of $C \vee L$ with clauses in $F \setminus \{C \vee L\}$ are tautologies.

► Redundancy of blocked clauses can be shown via Herbrand's Theorem:

► Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

A formula F (without equality) is satisfiable iff every finite set of ground instances of clauses in F is propositionally satisfiable.

In propositional logic, we showed how satisfying assignments of *F* \ {*C*} can be "repaired" to satisfy also *C*.

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

- In propositional logic, we showed how satisfying assignments of *F* \ {*C*} can be "repaired" to satisfy also *C*.
- In first-order logic, one can show that satisfying assignments for sets of ground instances of clauses in F \ {C} can be repaired:

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

- In propositional logic, we showed how satisfying assignments of *F* \ {*C*} can be "repaired" to satisfy also *C*.
- In first-order logic, one can show that satisfying assignments for sets of ground instances of clauses in F \ {C} can be repaired:
 - Repaired assignments also satisfy ground instances of *C*.

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

- In propositional logic, we showed how satisfying assignments of F \ {C} can be "repaired" to satisfy also C.
- In first-order logic, one can show that satisfying assignments for sets of ground instances of clauses in F \ {C} can be repaired:
 - ▶ Repaired assignments also satisfy ground instances of *C*.
 - May need to iterate, finitely many times.

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

- ► In propositional logic, we showed how satisfying assignments of F \ {C} can be "repaired" to satisfy also C.
- ► In first-order logic, one can show that satisfying assignments for sets of ground instances of clauses in F \ {C} can be repaired:
 - Repaired assignments also satisfy ground instances of C.
 - May need to iterate, finitely many times.
 - (Self-resolutions do not need to be considered.)

Redundancy of blocked clauses can be shown via Herbrand's Theorem:

Theorem

- ► In propositional logic, we showed how satisfying assignments of F \ {C} can be "repaired" to satisfy also C.
- In first-order logic, one can show that satisfying assignments for sets of ground instances of clauses in F \ {C} can be repaired:
 - Repaired assignments also satisfy ground instances of *C*.
 - May need to iterate, finitely many times.
 - (Self-resolutions do not need to be considered.)
- Blocked clauses are redundant in first-order logic (without equality).

► In FOL with equality, our definition does not guarantee redundancy:

► In FOL with equality, our definition does not guarantee redundancy:

• Let
$$C = P(a)$$
 and $F = \{a \approx b, \neg P(b)\}$

► In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)

► In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.

► In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.
 - But F is satisfiable while $F \cup \{C\}$ is not:

► In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.
 - But F is satisfiable while $F \cup \{C\}$ is not:
 - Every model of F must falsify P(a).

▶ In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.
 - But F is satisfiable while $F \cup \{C\}$ is not:
 - Every model of F must falsify P(a).
- ► Idea [KK2016]: Flatten literals before resolution:
 - $P(a) \longrightarrow x \not\approx a \lor P(x)$

▶ In FOL with equality, our definition does not guarantee redundancy:

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.
 - But F is satisfiable while $F \cup \{C\}$ is not:
 - Every model of F must falsify P(a).
- ► Idea [KK2016]: Flatten literals before resolution:
 - $P(a) \longrightarrow x \not\approx a \lor P(x)$
 - $\blacktriangleright \neg P(b) \longrightarrow y \not\approx b \lor \neg P(y)$

► In FOL with equality, our definition does not guarantee redundancy:

Example

- Let C = P(a) and $F = \{a \approx b, \neg P(b)\}$
 - There are no resolvents of C since P(a) and P(b) are not unifiable (a and b are constants)
 - C is blocked w.r.t. F.
 - But F is satisfiable while $F \cup \{C\}$ is not:
 - Every model of F must falsify P(a).
- Idea [KK2016]: Flatten literals before resolution:
 - $P(a) \longrightarrow x \not\approx a \lor P(x)$
 - $\blacktriangleright \neg P(b) \longrightarrow y \not\approx b \lor \neg P(y)$
 - Resolvent of $x \not\approx a \lor P(x)$ and $x \not\approx a \lor \neg P(y)$ upon P(x):

$$x \not\approx a \lor x \not\approx b$$
,

is not valid.

Definition (Flattening)

Definition (Flattening)

Let $C = L(t_1, \ldots, t_n) \vee C'$. Flattening the literal $L(t_1, \ldots, t_n)$ in C yields the clause $C^- = \bigvee_{1 \leq i \leq n} x_i \not\approx t_i \vee L(x_1, \ldots, x_n) \vee C'$, with x_i, \ldots, x_n being fresh variables not occurring in C.

► A clause C ∨ L is then equality-blocked if, after flattening all literals with the same predicate as L, all flat L-resolvents are valid.

Definition (Flattening)

- ► A clause *C* ∨ *L* is then equality-blocked if, after flattening all literals with the same predicate as *L*, all flat *L*-resolvents are valid.
- Redundancy can be shown using a variant of Herbrand's Theorem with equality axioms.

Definition (Flattening)

- ► A clause *C* ∨ *L* is then equality-blocked if, after flattening all literals with the same predicate as *L*, all flat *L*-resolvents are valid.
- Redundancy can be shown using a variant of Herbrand's Theorem with equality axioms.
- Flipping whole equivalence classes!

Definition (Flattening)

- ► A clause *C* ∨ *L* is then equality-blocked if, after flattening all literals with the same predicate as *L*, all flat *L*-resolvents are valid.
- Redundancy can be shown using a variant of Herbrand's Theorem with equality axioms.
- Flipping whole equivalence classes!
 - (cannot block on the equality literals)

Definition (Flattening)

- ► A clause *C* ∨ *L* is then equality-blocked if, after flattening all literals with the same predicate as *L*, all flat *L*-resolvents are valid.
- Redundancy can be shown using a variant of Herbrand's Theorem with equality axioms.
- Flipping whole equivalence classes!
 - (cannot block on the equality literals)
- Equality-blocked clauses are redundant in first-order logic with equality.

Outline

1. Background:

- Overview on preprocessing techniques.
- Blocked clauses in propositional logic.
- 2. Blocked clauses in first-order logic without equality
- 3. Blocked clauses in first-order logic with equality (*equality-blocked clauses*)
- 4. Complexity of detecting blocked clauses.
- 5. Evaluation results for first-order blocked-clause elimination.

Complexity of Detecting Blocked Clauses

The easy part:

Given a candidate clause C = L ∨ C' there are only linearly many partner clauses D ∈ F \ {C} to check for L-resolvents.

Complexity of Detecting Blocked Clauses

The easy part:

Given a candidate clause C = L ∨ C' there are only linearly many partner clauses D ∈ F \ {C} to check for L-resolvents.

A single flat *L*-resolvent check (the \approx case)

- ► Computing a flat *L*-resolvent is easy (take the obvious small *mgu*).
- *R* is valid iff $\neg \forall R$ is unsatisfiable.
- ▶ $\neg \forall R$ is a ground equational conjunction: use congruence closure.
Complexity of Detecting Blocked Clauses

The easy part:

Given a candidate clause C = L ∨ C' there are only linearly many partner clauses D ∈ F \ {C} to check for L-resolvents.

A single flat *L*-resolvent check (the \approx case)

- ▶ Computing a flat *L*-resolvent is easy (take the obvious small *mgu*).
- *R* is valid iff $\neg \forall R$ is unsatisfiable.
- ▶ $\neg \forall R$ is a ground equational conjunction: use congruence closure.

A single *L*-resolvent check (blocked in the absence of \approx) Rely on unification closure to avoid the risk of exponential unifiers.

Complexity of Detecting Blocked Clauses

The easy part:

Given a candidate clause C = L ∨ C' there are only linearly many partner clauses D ∈ F \ {C} to check for L-resolvents.

A single flat *L*-resolvent check (the \approx case)

- ► Computing a flat *L*-resolvent is easy (take the obvious small *mgu*).
- *R* is valid iff $\neg \forall R$ is unsatisfiable.
- ▶ $\neg \forall R$ is a ground equational conjunction: use congruence closure.

A single L-resolvent check (blocked in the absence of $\approx)$

Rely on unification closure to avoid the risk of exponential unifiers.

The Main Challenge

Given $C = L \vee C'$ and $D = N_1 \vee \cdots \vee N_n \vee D'$ such that $L, \overline{N}_1, \ldots, \overline{N}_n$ unify, there are $2^n - 1$ *L*-resolvents whose validity should be checked!

Testing Validity of all *L*-resolvents

Algorithm 1:

Input:

Candidate $C = L \vee C'$ and a partner $D = N_1 \vee \ldots \vee N_n \vee D'$,

where N_1, \ldots, N_n are all the literals of D which pairwise unify with \overline{L} **Output:**

Are all *L*-resolvents of $L \vee C'$ and *D* valid?

1:	for $k \leftarrow 1, \ldots, n$ do
2:	$N \leftarrow \{N_k\}$
3:	while L unifiable with literals $ar{N}$ via an $mgu \ \sigma$ do
4:	${\sf K} \leftarrow$ all pairs of complementary literals in ${\sf C}'\sigma ee ({\sf D} \setminus {\sf N})\sigma$
5:	if $\mathcal{K} = \emptyset$ then
6:	return NO
7:	if every pair of complementary literals in K contains a literal $N_i\sigma$ then
8:	$N \leftarrow N \cup \{N_i \mid N_i \sigma \text{ is part of a complementary pair}\}$
9:	else
10:	break (the while loop)
11.	

11: return YES

Outline

1. Background:

- Overview on preprocessing techniques.
- Blocked clauses in propositional logic.
- 2. Blocked clauses in first-order logic without equality
- 3. Blocked clauses in first-order logic with equality (*equality-blocked clauses*)
- 4. Complexity of detecting blocked clauses.
- 5. Evaluation results for first-order blocked-clause elimination.

Blocked Clause Elimination (BCE) - Implementation

Implemented in automated theorem prover Vampire

- as an optional preprocessing step: -bce on
- \blacktriangleright blocked / equality-blocked based on the presence of \approx
- Vampire as a clausifier: -mode clausify

Blocked Clause Elimination (BCE) – Implementation

Implemented in automated theorem prover Vampire

- as an optional preprocessing step: -bce on
- \blacktriangleright blocked / equality-blocked based on the presence of \approx
- Vampire as a clausifier: -mode clausify

The main loop

- index clauses by predicate and polarity
- ▶ priority queue of candidates (*C*, *L*); the least effort first
- ▶ if candidate (C, L) and partner D do not yield a valid L-resolvent store (C, L) with D for potential later "resurrection"

Blocked Clause Elimination (BCE) - Implementation

Implemented in automated theorem prover Vampire

- as an optional preprocessing step: -bce on
- \blacktriangleright blocked / equality-blocked based on the presence of \approx
- Vampire as a clausifier: -mode clausify

The main loop

- index clauses by predicate and polarity
- ▶ priority queue of candidates (*C*, *L*); the least effort first
- ▶ if candidate (C, L) and partner D do not yield a valid L-resolvent store (C, L) with D for potential later "resurrection"

Single candidate-partner check

- cheap but safe approximation of Algorithm 1
- cheap approximation of congruence closure reasoning

Do Blocked Clauses Occur in Practice?

The setup:

- ► All first-order benchmarks from TPTP 6.4.0:
 - ▶ 15 942 problems: 8044 general FO, 7898 CNF
 - 73% with equality
- ▶ 300 s for parsing, (clausification), and blocked-clause elimination

Do Blocked Clauses Occur in Practice?

The setup:

- ► All first-order benchmarks from TPTP 6.4.0:
 - 15 942 problems: 8044 general FO, 7898 CNF
 - 73% with equality
- ▶ 300 s for parsing, (clausification), and blocked-clause elimination

Results

- Blocked-clause elimination finished on all but one problems.
- Average time: 0.238 s, median 0.001 s.
- ▶ 11.72 % of the collective total of 299 379 591 clauses are blocked.
- ▶ 59% of problems contain a blocked clause.
- ▶ In more than 1000 problems, 25 % of the clauses could be eliminated.
- ▶ 113 satisfiable formulas directly solved by blocked-clause elimination.

Impact of BCE on Performance

The setup:

- ▶ 7619 TPTP problems where BCE eliminates at least one clause
- provers from CASC 2016, but fixed a single strategy
- 300 s for both BCE and proving

Impact of BCE on Performance

The setup:

- ▶ 7619 TPTP problems where BCE eliminates at least one clause
- provers from CASC 2016, but fixed a single strategy
- 300 s for both BCE and proving

Strategies for proving theorems (CASC 2016 FOF champions)											
	un	Sa	atisfiab	ole	total						
Vampire	3172	-28	+40	458	-0	+5	3630	-28	+45		
E	3097	-20	+27	363	$^{-1}$	+9	3460	-21	+36		
CVC4	2930	-18	+37	9	-0	+68	2939	-18	+105		

Impact of BCE on Performance

The setup:

- ▶ 7619 TPTP problems where BCE eliminates at least one clause
- provers from CASC 2016, but fixed a single strategy
- 300 s for both BCE and proving

Strategies for proving theorems (CASC 2016 FOF champions)											
	unsatisfiable			satisfiable			total				
Vampire	3172	-28	+40	458	-0	+5	3630	-28	+45		
E	3097	-20	+27	363	-1	+9	3460	-21	+36		
CVC4	2930	-18	+37	9	-0	+68	2939	-18	+105		

Satisfiability checking strategies (CASC 2016 FNT champions)

	satisfiable			uns	satisfiab	ole	total		
Vampire	531	-0	+24	719	-4	+5	1250	-4	+29
iProver	558	-0	+1	755	-6	+4	1313	-6	+5
CVC4	489	-1	+28	1724	-24	+20	2213	-25	+48

Mock Portfolio Construction

Portfolios?

- Provers usually employ many strategies to prove a conjecture.
- > A new technique may interact differently with each of the strategies.

Mock Portfolio Construction

Portfolios?

- Provers usually employ many strategies to prove a conjecture.
- A new technique may interact differently with each of the strategies.

The setup:

- 302 satisfiable TPTP problems previous established hard for Vampire.
- ► 50 000 pairs of randomized strategies (w/o BCE, with BCE).
- ▶ 120 s time limit

Mock Portfolio Construction

Portfolios?

- Provers usually employ many strategies to prove a conjecture.
- A new technique may interact differently with each of the strategies.

The setup:

- 302 satisfiable TPTP problems previous established hard for Vampire.
- ▶ 50 000 pairs of randomized strategies (w/o BCE, with BCE).
- 120 s time limit

Results

- ▶ w/o BCE: 6766 successes, with BCE: 8414 successes
- only w/o BCE: 148, only with BCE: 1796

Summary

 We lifted blocked clauses to first-order logic (both without and with equality).

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.
- We implemented blocked-clause elimination in Vampire.

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.
- We implemented blocked-clause elimination in Vampire.
- Encouraging experimental results.

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.
- We implemented blocked-clause elimination in Vampire.
- Encouraging experimental results.

Outlook

 Combine with other first-order preprocessing techniques (such as predicate elimination [KK2016]).

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.
- We implemented blocked-clause elimination in Vampire.
- Encouraging experimental results.

Outlook

- Combine with other first-order preprocessing techniques (such as predicate elimination [KK2016]).
- Lift other preprocessing techniques from SAT: [KS2017]

Summary

- We lifted blocked clauses to first-order logic (both without and with equality).
- Blockedness can be checked in polynomial time.
- We implemented blocked-clause elimination in Vampire.
- Encouraging experimental results.

Outlook

- Combine with other first-order preprocessing techniques (such as predicate elimination [KK2016]).
- Lift other preprocessing techniques from SAT: [KS2017]
- Beyond elimination: addition and decomposition in FO?

BCE and Unused Definition Elimination

Propositionally, BCE simulates UDE: $\neg p \lor \varphi \quad p \lor \neg \varphi \quad \psi[p]$ for any $\neg p \lor C \in CNF(\varphi)$ and $p \lor D \in CNF(\neg \varphi)$ the resolvents $C \lor D$

are tautologies (unless we name "asymmetrically" inside φ)

This breaks down with quantifiers:

Example

Given a definition $p(x) \equiv \exists y.q(x,y)$, trying to block

 $eg p(x) \lor q(x, sk_{\exists y.q(x,y)}(x)) \qquad p(x) \lor \neg q(x,y)$