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context

our goal

the skeptic’s view

we have shown that some 1,000,001 propositional formulas are
unsatisfiable

the challenge

formally verify all the steps in the process

state the mathematical problem

prove the propositional encoding sound

prove the simplification steps sound

prove the divide-and-conquer strategy sound
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formalizing the problem

the boolean pythagorean triples problem

definitions

we use the coq type of (binary) positive numbers

our “colors” are true and false

Definition coloring := positive -> bool.

Definition pythagorean (a b c:positive) := a*a + b*b = c*c.

Definition pythagorean_pos (C:coloring) := forall a b c,

pythagorean a b c -> (C a <> C b) \/ (C a <> C c) \/ (C b <> C c).
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a propositional encoding

Definition Pythagorean_formula (n:nat) := [...]∧
1≤a<b<c<n

(xa ∨ xb ∨ xc) ∧ (xa ∨ xb ∨ xc)

(some) direct encoding in functional programming
(we first build a list of pythagorean triples)

n should be 7826, but it pays off to leave it uninstantiated

Parameter TheN : nat.

Definition The_CNF := Pythagorean_formula TheN.

Theorem Pythagorean_Theorem : unsat The_CNF -> forall C, ~pythagorean_pos C.

we can extract to ml and recompute the propositional formula
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formalizing the problem

blocked clause elimination (i/ii)

in general

reduce the size of a cnf by eliminating clauses that do not change
satisfiability

in this case

if k occurs in exactly one pythagorean triple, then that triple can
be removed from the set

any coloring that makes all remaining triples monochromatic
can be trivially extended to k
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formalizing the problem

blocked clause elimination (ii/ii)

Fixpoint simplify (t:triples) (l:list positive) := match l with

| nil => t

| p::l’ => if (one_occurrence_dec p t) then simplify (remove_number p t) l’

else simplify t l’

end.

Definition simplified_Pythagorean_formula (n:nat) (l:list positive) := [...]

Parameter The_List : list positive.

Definition The_Simple_CNF := simplified_Pythagorean_formula TheN The_List.

Theorem simplification_ok : unsat The_CNF <-> unsat The_Simple_CNF.

The_List is instantiated by a concrete list built from the
trace of heule et al.’s proof
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formalizing the problem

the symmetry break (i/ii)

idea

add additional constraints that preserve satisfiability but reduce the
number of solutions
(“without loss of generality. . . ”)

concretely

impose that 2520 is colored true

nothing magical about 2520

it just happen to be the number occurring most often
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formalizing the problem

the symmetry break (ii/ii)

Lemma fix_one_color : forall C, pythagorean_pos C ->

forall n b, exists C’, pythagorean_pos C’ /\ C’ n = b.

Parameter TheBreak : positive.

Definition The_Asymmetric_CNF := [...]

Theorem symbreak_ok : unsat The_CNF <-> unsat The_Asymmetric_CNF.

The_Asymmetric_CNF simply has the extra clause x2520

using program extraction we can compute the simplified
propositional formula in approx. 35 minutes
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dividing and conquering

cube-and-conquer

methodology

find a set of partial valuations (the cubes) such that:

the conjunction of the cnf with each cube is unsatisfiable

the disjunction of the cubes is a tautology

a perfect balance

cubes are built using heuristics

replace one big problem with many smaller ones

need criteria to decide when to stop splitting

not our problem!
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dividing and conquering

cube-and-conquer, coq style

Definition Cube := list Literal.

Fixpoint Cubed_CNF (F:CNF) (C:Cube) : CNF := [...]

Fixpoint noCube (C:list Cube) : CNF := [...]

Lemma CubeAndConquer_lemma : forall Formula Cubes,

(forall c, In c Cubes -> unsat (Cubed_CNF Formula c)) ->

unsat (noCube Cubes) -> unsat Formula.
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dividing and conquering

plugging it all together

in this work

needed to reuse results from tacas’17

no resources to rerun all unsatisfiability proofs

additional steps to connect to previous results

afterwards

refactored the source code

can now be run in one go (at your own risk)

hid some nasty details
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conclusions

conclusions

formally verified unsolvability of the boolean pythagorean
triples problem

stronger claim for the mathematical result

formal generation of the propositional encoding

take-home lesson: this is not so hard. . .
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conclusions

thank you!
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