formally proving the boolean pythagorean triples conjecture

luís cruz-filipe

(joint work with peter schneider-kamp)

department of mathematics and computer science university of southern denmark

> lpar-21, maun, botswana may 12th, 2017

outline

2 formalizing the problem

3 dividing and conquering

4 conclusions

outline

2 formalizing the problem

3 dividing and conquering

$verifying \ unsatisfiability$

tacas' 17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq
- correct-by-construction extracted checker

$verifying \ unsatisfiability$

tacas' 17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq
- correct-by-construction extracted checker

evaluation

examples from the 2015 and 2016 sat competitions...

$verifying \ unsatisfiability$

tacas' 17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq
- correct-by-construction extracted checker

evaluation

examples from the 2015 and 2016 sat competitions... ... and "the large proof ever", because it's there

unexpected success

the boolean pythagorean triples problem

a problem in ramsey theory

can the natural numbers be colored with two colors such that no pythagorean triple is monochromatic?

the boolean pythagorean triples problem

a problem in ramsey theory

can the natural numbers be colored with two colors such that no pythagorean triple is monochromatic?

no

heule et al. showed that the finite restriction to $\{1,\ldots,7825\}$ is already unsolvable

- encoding as a propositional formula
- simplification step
- divide-and-conquer strategy
- one million and one unsatisfiable formulas

proof strategy

proof strategy

our goal

the skeptic's view

we have shown that some 1,000,001 propositional formulas are unsatisfiable

the challenge

formally verify all the steps in the process

- state the mathematical problem
- prove the propositional encoding sound
- prove the simplification steps sound
- prove the divide-and-conquer strategy sound

outline

2 formalizing the problem

dividing and conquering

4 conclusions

formally proving the boolean pythagorean triples conjecture

└─formalizing the problem

road map

the boolean pythagorean triples problem

definitions

- we use the coq type of (binary) positive numbers
- our "colors" are true and false

Definition coloring := positive -> bool.

```
Definition pythagorean (a b c:positive) := a*a + b*b = c*c.
```

```
Definition pythagorean_pos (C:coloring) := forall a b c,
pythagorean a b c -> (C a <> C b) \/ (C a <> C c) \/ (C b <> C c).
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a propositional encoding

Definition Pythagorean_formula (n:nat) := [...]
$$\bigwedge_{1 \le a < b < c < n} (x_a \lor x_b \lor x_c) \land (\overline{x_a} \lor \overline{x_b} \lor \overline{x_c})$$

- (some) direct encoding in functional programming (we first build a list of pythagorean triples)
- *n* should be 7826, but it pays off to leave it uninstantiated

a propositional encoding

Definition Pythagorean_formula (n:nat) := [...]
$$\bigwedge_{1 \le a < b < c < n} (x_a \lor x_b \lor x_c) \land (\overline{x_a} \lor \overline{x_b} \lor \overline{x_c})$$

- (some) direct encoding in functional programming (we first build a list of pythagorean triples)
- n should be 7826, but it pays off to leave it uninstantiated

Parameter TheN : nat.

```
Definition The_CNF := Pythagorean_formula TheN.
```

Theorem Pythagorean_Theorem : unsat The_CNF -> forall C, ~pythagorean_pos C.

we can extract to ml and recompute the propositional formula

formally proving the boolean pythagorean triples conjecture

└─formalizing the problem

road map

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ.

blocked clause elimination (i/ii)

in general

reduce the size of a cnf by eliminating clauses that do not change satisfiability

in this case

if k occurs in exactly one pythagorean triple, then that triple can be removed from the set

 any coloring that makes all remaining triples monochromatic can be trivially extended to k

blocked clause elimination (ii/ii)

Definition simplified_Pythagorean_formula (n:nat) (1:list positive) := [...]

Parameter The_List : list positive.

Definition The_Simple_CNF := simplified_Pythagorean_formula TheN The_List.

Theorem simplification_ok : unsat The_CNF <-> unsat The_Simple_CNF.

The_List is instantiated by a concrete list built from the trace of heule et al.'s proof

formally proving the boolean pythagorean triples conjecture

formalizing the problem

the symmetry break (i/ii)

idea

add additional constraints that preserve satisfiability but reduce the number of solutions ("without loss of generality...")

concretely

impose that 2520 is colored true

- nothing magical about 2520
- it just happen to be the number occurring most often

the symmetry break (ii/ii)

```
Lemma fix_one_color : forall C, pythagorean_pos C -> forall n b, exists C', pythagorean_pos C' /\ C' n = b.
```

Parameter TheBreak : positive.

```
Definition The_Asymmetric_CNF := [...]
```

Theorem symbreak_ok : unsat The_CNF <-> unsat The_Asymmetric_CNF.

The_Asymmetric_CNF simply has the extra clause x₂₅₂₀
 using program extraction we can compute the simplified propositional formula in approx. 35 minutes

dividing and conquering

outline

context

2 formalizing the problem

3 dividing and conquering

4 conclusions

formally proving the boolean pythagorean triples conjecture

dividing and conquering

road map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

dividing and conquering

$cube-and\-conquer$

methodology

find a set of partial valuations (the cubes) such that:

- the conjunction of the cnf with each cube is unsatisfiable
- the disjunction of the cubes is a tautology

a perfect balance

cubes are built using heuristics

- replace one big problem with many smaller ones
- need criteria to decide when to stop splitting
- not our problem!

dividing and conquering

cube-and-conquer, coq style

Definition Cube := list Literal.

```
Fixpoint Cubed_CNF (F:CNF) (C:Cube) : CNF := [...]
```

Fixpoint noCube (C:list Cube) : CNF := [...]

Lemma CubeAndConquer_lemma : forall Formula Cubes, (forall c, In c Cubes -> unsat (Cubed_CNF Formula c)) -> unsat (noCube Cubes) -> unsat Formula.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

formally proving the boolean pythagorean triples conjecture

dividing and conquering

road map

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

dividing and conquering

plugging it all together

in this work

needed to reuse results from tacas'17

- no resources to rerun all unsatisfiability proofs
- additional steps to connect to previous results

afterwards

refactored the source code

can now be run in one go (at your own risk)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

hid some nasty details

- conclusions

outline

context

2 formalizing the problem

3 dividing and conquering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4 conclusions

- conclusions

conclusions

 formally verified unsolvability of the boolean pythagorean triples problem

- stronger claim for the mathematical result
- formal generation of the propositional encoding
- take-home lesson: this is not so hard...

- conclusions

thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ