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Talk outline

1. Higher-Order Modal Logic (HOML)

2. Automating HOML

3. Evaluation

4. Example / Demo
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Introduction

Reasoning in Non-Classical Logics

É Increasing interest various fields
É Artificial Intelligence (e.g. Agents, Knowledge)
É Computer Linguistics (e.g. Semantics)
É Mathematics (e.g. Geometry, Category theory)
É Theoretical Philsophy (e.g. Metaphysics)

É Most powerful ATP/ITP: Classical logic only

Our focus: Modal logics

É Prover for (propositional) modal logics exist
É ModLeanTAP, Molle, Bliksem, FaCT++,
É MOLTAP, KtSeqC, STeP, TRP
É ...

É Only few for quantified variants
É MleanTAP, MleanCoP, MleanSeP (J. Otten)
É f2p+MSPASS

,
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Automation of Quantified Modal Logic

Motivation
1. First-order quantification is (sometimes) not enough

2. Semantic diversity/flexibility needed

,
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Automation of Quantified Modal Logic

Motivation
1. First-order quantification is (sometimes) not enough
2. Semantic diversity/flexibility needed

Studies in Metaphysics (e.g. Ontological Argument),

Studies in Computer Ethics
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Automation of Quantified Modal Logic

Motivation
1. First-order quantification is (sometimes) not enough

2. Semantic diversity/flexibility needed

Automation approach
É Indirect: Via encoding into (classical) HOL
É Use existing general purpose HOL reasoners

Advantages
É Sophisticated existing systems

É ATPs: TPS, agsyHOL, Satallax, LEO-II, Leo-III
É Further: Isabelle, Nitpick

É Not fixed to a proving system
É Semantic variations with minor adjustments

É Axiomatization
É Quantification semantics
É ...
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Higher Order Modal Logic – Syntax

Based on Simple type theory [Church, J.Symb.L., 1940]

augmented with modalities

É Simple types T generated by base types and →
É Typically, base types are o and ι
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augmented with modalities

É Simple types T generated by base types and →
É Typically, base types are o and ι

Type of truth-values
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Higher Order Modal Logic – Syntax

Based on Simple type theory [Church, J.Symb.L., 1940]

augmented with modalities

É Simple types T generated by base types and →
É Typically, base types are o and ι

É Terms defined by (α,β ∈ T , cα ∈ Σ, Xα ∈ V, i ∈ I)

s, t ::= cα | Xα

| (λXα.sβ)α→β | (sα→β tα)β

| (�i
o→o

so)o

É Allow infix notation for binary logical connectives
É Remaining logical connectives can be defined as usual
É Formulae of HOML are those terms with type o

,
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

,
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

Set of possible worlds

,
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

Family of accessibility relations Ri ⊆ W ×W
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

Family of frames, one for every world
Notion of frames D = (Dτ)τ∈T as in HOL:

Dι 6= ∅

Do = {T, F}

Dτ→ν = DDτ
ν

,
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

Family of interpretation functions Iw
cτ

Iw7→ d ∈ Dτ ∈ Dw

Assume Iw(¬),Iw(∨) . . . is standard.

,
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Higher Order Modal Logic – Semantics

Extend HOL models with Kripke structures

M =
�

W , {Ri}i∈I , {Dw}w∈W , {Iw}w∈W
�

Value of a term given by

‖Xτ‖M,g,w = gw(X)

‖cτ‖M,g,w = Iw(X)

‖ (λXτ . sν)τ→ν ‖M,g,w = y ∈ Dτ 7→ ‖sν‖M,g[Xτ /y]w,w

‖ (sτ→ν tτ)ν ‖M,g,w = ‖sτ→ν‖M,g,w
�

‖tτ‖M,g,w
�

‖�i
o→o

so‖M,g,w =

¨

T if ‖so‖M,g,v = T for all v ∈W s.t. (w,v) ∈ Ri

F otherwise

,
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Semantic variants of HOML

1. Axiomatization of �i

2. Quantification

3. Rigidity

4. Consequence

,
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Semantic variants of HOML

1. Axiomatization of �i

É What properties does the box operators have?
É Depending on the application domain

Some popular axiom schemes:
Name Axiom scheme Condition on ri Corr. formula

K �
i(s ⊃ t) ⊃ (�is ⊃ �it) — —

B s ⊃ �i◊is symmetric wRiv ⊃ vRiw
D �

is ⊃ ◊is serial ∃v.wRiv
T/M �

is ⊃ s reflexive wRiw
4 �

is ⊃ �i�is transitive
�

wRiv∧ vRiu
�

⊃ wRiu
5 ◊

is ⊃ �i◊is euclidean
�

wRiv∧wRiu
�

⊃ vRiu
... ... ... ...

2. Quantification

3. Rigidity

4. Consequence

,
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Semantic variants of HOML

1. Axiomatization of �i

É What properties does the box operators have?

2. Quantification
É What is the meaning of ∀?
É Several popular choices exist

(1) Varying domains: As introduced (unrestricted frames)
(2) Constant domains: Dw = Dv for all worlds w,v ∈W
(3) Cumulative domains: Dw ⊆ Dv whenever (w,v) ∈ Ri

(4) Decreasing domains: Dw ⊇ Dv whenever (w,v) ∈ Ri

3. Rigidity

4. Consequence

,
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Semantic variants of HOML

1. Axiomatization of �i

É What properties does the box operators have?

2. Quantification
É What is the meaning of ∀?

3. Rigidity
É Do all constants c ∈ Σ denote the same object at every world?
É Several popular choices exist

(1) Flexible constants: As introduced (unrestricted Iw)
(2) Rigid constants: Iw(c) = Iv(c)

for all worlds w,v ∈W and all c ∈ Σ

4. Consequence

,
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Semantic variants of HOML

1. Axiomatization of �i

É What properties does the box operators have?

2. Quantification
É What is the meaning of ∀?

3. Rigidity
É Do all constants c ∈ Σ denote the same object at every world?

4. Consequence
É What is an appropriate notion of logical consequence |=HOML?
É Many choices exist, two of them are

(1) Local consequence: ... not displayed here ...

(2) Global consequence: ... not displayed here ...

,
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Semantic variants of HOML

1. Axiomatization of �i

É What properties does the box operators have?

2. Quantification
É What is the meaning of ∀?

3. Rigidity
É Do all constants c ∈ Σ denote the same object at every world?

4. Consequence
É What is an appropriate notion of logical consequence |=HOML?

−→ at least 10× 4× 2× 2 = 160 distinct logics

,
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Embedding of HOML within HOL

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic): s, t ::=
HOML (target logic): s, t ::=

Embedding of in
(1) Introduce new type μ for worlds

HOML formulas so are mapped to HOL predicates sμ→o

(2) Introduce new constants ri
μ→μ→o

for each i ∈ I

(3) Connectives:

=

=

=

=

(4) Meta-logical notions:

=
,
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Embedding of HOML within HOL

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic): s, t ::=
HOML (target logic): s, t ::=

Embedding of in
(1) Introduce new type μ for worlds

HOML formulas so are mapped to HOL predicates sμ→o

(2) Introduce new constants ri
μ→μ→o

for each i ∈ I

(3) Connectives:

¬o→o = λSσ .λWμ. ¬(SW)

∨o→o→o = λSσ .λTσ .λWμ. (SW)∨ (T W)

Πτ
(τ→o)→o

= λPτ→σ .λWμ.∀Xτ . P X W

�o→o = λSσ .λWμ.∀Vμ. ¬(ri W V)∨ S V

(4) Meta-logical notions:

=
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Embedding of HOML within HOL

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic): s, t ::=
HOML (target logic): s, t ::=

Embedding of in
(1) Introduce new type μ for worlds

HOML formulas so are mapped to HOL predicates sμ→o

(2) Introduce new constants ri
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for each i ∈ I

(3) Connectives:
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Πτ
(τ→o)→o

= λPτ→σ .λWμ.∀Xτ . P X W

�o→o = λSσ .λWμ.∀Vμ. ¬(ri W V)∨ S V

(4) Meta-logical notions:

valid = λsσ .∀Wμ. s W
,
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Embedding of HOML within HOL #2

Embedding semantic variants

1. Axiomatization of �i

2. Quantification
3. Rigidity
4. Consequence

,
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Embedding of HOML within HOL #2

Embedding semantic variants

1. Axiomatization of �i

Recall correspondences:

Name Axiom scheme Condition on ri Corr. formula
... ... ... ...
B s ⊃ �i◊is symmetric wRiv ⊃ vRiw
... ... ... ...

For each desired axiom scheme for �i:
Postulate frame condition on ri as HOL axiom

2. Quantification
3. Rigidity
4. Consequence
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Embedding of HOML within HOL #2

Embedding semantic variants

1. Axiomatization of �i

Postulate frame condition on ri as HOL axiom

2. Quantification
Choose appropriate definition/axiomatization of quantifier:
Constant domains quantifier:

Πτ
(τ→o)→o

= λPτ→σ .λWμ.∀Xτ . P X W

Varying domains quantifier:

Πτ(τ→o)→o,va = λPτ→σ .λWμ.∀Xτ . ¬(eiw X W)∨ (P X W)

Cumulative/decreasing domains quantifier:
Add axioms on eiw

3. Rigidity
4. Consequence

,
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Embedding of HOML within HOL #2

Embedding semantic variants

1. Axiomatization of �i

Postulate frame condition on ri as HOL axiom

2. Quantification
Choose appropriate definition/axiomatization of quantifier

3. Rigidity
Rigid constants:
Only translate Boolean types to predicates: o = μ→ o

Rigid constants:
Also translate individuals types to predicates: ι = μ→ ι

4. Consequence

,
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Embedding of HOML within HOL #2

Embedding semantic variants

1. Axiomatization of �i

Postulate frame condition on ri as HOL axiom

2. Quantification
Choose appropriate definition/axiomatization of quantifier

3. Rigidity
Appropriate type lifting

4. Consequence
Global consequence: Apply valid(μ→o)→o to all translated sμ→o

so = valid(μ→o)→o sμ→o

Local consequence: Apply actuality operator A to all translated sμ→o

so = A(μ→o)→o sμ→o

where A = λSσ . s wactual and wactual is an uninterpreted symbol

,
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Problem representation

Ongoing work: Extension of TPTP THF syntax for modal logic

(1) Formula syntax
thf( classical, axiom, ! [X:$i]: (p @ X)).

↓ Extend syntax with modalities
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).

(2) Semantics configuration
Add ”logic”-annotated statements to the problem:

thf(simple_s5, logic, ($modal := [
$constants := $rigid,
$quantification := $constant,
$consequence := $global,
$modalities := $modal_system_S5 ])).

É Intended semantics is attached to the problem

,
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Problem representation

Ongoing work: Extension of TPTP THF syntax for modal logic

(1) Formula syntax
thf( classical, axiom, ! [X:$i]: (p @ X)).

↓ Extend syntax with modalities
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).

(2) Semantics configuration
Add ”logic”-annotated statements to the problem:

thf( mydomain_type , type , ( human : $tType ) ).
thf( myconstant_declaration , type , ( myconstant : $i ) ).
thf( complicated_s5 , logic , ( $modal := [

$constants := [ $rigid , myconstant := $flexible ] ,
$quantification := [ $constant , human := $varying ] ,
$consequence := [ $global , myaxiom := $local ] ,
$modalities := [ $modal_system_S5, $box_int @ 1 := $modal_system_T ] ] ) ).

É Intended semantics is attached to the problem

,
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Stand-alone tool

Embedding procedure implemented as stand-alone tool

É Semantic specification is analyzed first
É Adequate definitions of logical and meta-logical notions are included

as axioms and definitions
É The problem is translated as presented
É Output format: Modal THF
É Integrated as pre-processor into Leo-III

,
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Evaluation

Evaluation setting:
É Translated all 580 mono-modal QMLTP problems to modal THF
É Semantic setting:

1. Modal operator axiom system ∈ {K,D,T,S4, S5}
2. Quantification semantics ∈ {constant,varying,cumul.,decreasing}
3. Rigid constants
4. Consequence ∈ {local,global}

É Native modal logic prover: MleanCoP (J. Otten)
É HOL reasoners: Satallax, LEO-II, Nitpick
É Timeout 60s (2x AMD Opteron 2376 Quad Core/16 GB RAM)

Comments on evaluation result:
É MleanCoP not applicable to modal logic K
É MleanCoP not applicable to decreasing domains semantics
É MleanCoP not applicable to problems with equality symbol
É MleanCoP not applicable for global consequence
É Only first-order modal logic problems
É Embedding approach not restricted to benchmark settings

,
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Evaluation #2

Result excerpt: Theorems

D vary D const T vary T const S4 vary S4 const S5 vary S5 const
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Evaluation #3

Result excerpt: Counter satisfiable (CSA)

D vary D const T vary T const S4 vary S4 const S5 vary S5 const
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The penultimate slide

Related work
É Generic theorem proving systems:

The Logics Workbench,MetTeL2, LoTREC
É Embedding of further logics:

Conditional logics, hybrid logics, many-valued logics, ...

Conclusion
É Provided a quite general semantics for HOML
É Presented a procedure that automatically converts HOML into HOL
É Implemented a stand-alone tool (e.g. as preprocessor)

É standard HOL provers can be used to reason about problems encoded in
the modal THF syntax

É Approach feasible (no evaluation for higher-order problems yet)
É Many new problems contributed in the modal THF format
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The ultimate slide

Thank you for your attention!
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