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Progress in ITP and ATP

Large Formalizations

AFP: 64K lemmas, 593K LoC [Nipkow+2015]

seL4: 49K lemmas, 400K LoC [Klein+2014]

Flyspeck: 27K lemmas, 2B intermediate steps [Hales+2016]

Problems handled by ATPs

Avatar [Voronkow 2015]

E-prover history mining [Schulz 2016]

SAT traces are big data

Little use of machine learning
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Fast progress in machine learning

Tasks involving logical inference

Natural language question answering [Sukhbaatar+2015]

Knowledge base completion [Socher+2013]

Automated translation [Wu+2016]

Games

AlphaGo problems similar to proving [Silver+2016]

Node evaluation

Policy decisions

Computer Vision

Better than human performance on some tasks [Russakovsky+2015]
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Machine Learning in Theorem Proving so far

Predict Statement Dependencies

Premise selection and relevance in ATPs

Heuristics, learning and deep learning useful

Estimate Statement Usefulness
Heuristics and simple learning methods

Propose Useful Conjectures
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Machine Learning

Supervised Learning Task

Assume G : D→ P Ground truth G

f : D×M → P Model architecture f

σ : P × P → R Prediction Metric σ

S ⊂ D× P Training Samples S

Find model parameters m ∈ M such that the expected
E(σ( f (d, m), G(d))) is minimized.
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Deep Learning vs Shallow Learning

Hand crafted Features

Predictor

Data

Traditional machine 
learning

Mostly convex, provably tractable

Special purpose solvers

Non-layered architectures

Learned Features

Predictor

Data

Deep Learning

Mostly NP-Hard

General purpose solvers

Hierarchical models
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Deep Learning for Mizar Lemma Selection [Alemi+2016]

Embed all lemmas into Rn using an LSTM

Embed conjecture into Rn using an LSTM

Simple classifier on top of concatenated embeddings

Trained to estimate usefulness on positive and negative examples

Statement to be proved

Embedding network

Potential Premise

Embedding network

Combiner network

Classifier/Ranker
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E-Prover given-clause loop

Most important choice: unprocessed clause selection [Schulz 2015]
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Data Collection

Mizar top-level theorems [Urban 2006]

Encoded in FOF

32,521 Mizar theorems with ≥ 1 proof

training-validation split (90%-10%)

replay with one strategy

Collect all CNF intermediate steps

and unprocessed clauses when proof is found
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Deep Network Architectures

Clause Embedder
Negated conjecture 

embedder

Concatenate

Fully Connected
(1024 nodes)

Fully Connected
(1 node)

Logistic loss

Clause tokens Negated conjecture 
tokens

Conv 5 (1024) + ReLU 

Input token embeddings

Conv 5 (1024) + ReLU

Conv 5 (1024) + ReLU 

Max Pooling

Overall network Convolutional Embedding

Non-dilated and dilated convolutions
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Recursive Neural Networks

Curried representation of first-order statements

Separate nodes for apply, or, and, not

Layer weights learned jointly for the same formula

Embeddings of symbols learned with rest of network

Tree-RNN and Tree-LSTM models
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Model accuracy

Model Embedding Size Accuracy on 50-50% split
Tree-RNN-256×2 256 77.5%
Tree-RNN-512×1 256 78.1%

Tree-LSTM-256×2 256 77.0%
Tree-LSTM-256×3 256 77.0%
Tree-LSTM-512×2 256 77.9%

CNN-1024×3 256 80.3%
?CNN-1024×3 256 78.7%
CNN-1024×3 512 79.7%
CNN-1024×3 1024 79.8%

WaveNet-256×3×7 256 79.9%
?WaveNet-256×3×7 256 79.9%
WaveNet-1024×3×7 1024 81.0%

WaveNet-640×3×7(20%) 640 81.5%
?WaveNet-640×3×7(20%) 640 79.9%

? = train on unprocessed clauses as negative examples
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Hybrid Heuristic

Already on proved statements performance requires modifications:
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Harder Mizar top-level statements

Model DeepMath 1 DeepMath 2 Union of 1 and 2

Auto 578 581 674
?WaveNet 640 644 612 767
?WaveNet 256 692 712 864
WaveNet 640 629 685 997

?CNN 905 812 1,057
CNN 839 935 1,101

Total (unique) 1,451 1,458 1,712

Overall proved 7.4% of the harder statements
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Summary

Guiding superposition proof

Deep network clause ranking

Performance
Batching (evaluate clauses together)

Hybrid heuristic

Specialized hardware could help?

Deep network models

Accuracy
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