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Progress in ITP and ATP

Large Formalizations

= AFP: 64K lemmas, 593K LoC [Nipkow+2015]
= sel4: 49K lemmas, 400K LoC [Klein+2014]
= Flyspeck: 27K lemmas, 2B intermediate steps [Hales+2016]

Problems handled by ATPs

= Avatar [Voronkow 2015]
= E-prover history mining [Schulz 2016]
= SAT traces are big data

Little use of machine learning
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Fast progress in machine learning

Tasks involving logical inference

= Natural language question answering [Sukhbaatar+2015]
= Knowledge base completion [Socher+2013]
= Automated translation [Wu+2016]
Games
AlphaGo problems similar to proving [Silver+2016]

= Node evaluation

= Policy decisions
Computer Vision

Better than human performance on some tasks [Russakovsky+2015]
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Machine Learning in Theorem Proving so far

Predict Statement Dependencies

= Premise selection and relevance in ATPs

= Heuristics, learning and deep learning useful

Estimate Statement Usefulness

= Heuristics and simple learning methods

Propose Useful Conjectures
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Machine Learning

Supervised Learning Task

Assume G : D — P Ground truth G
f:DxM—P Model architecture f
o:PxP—->R Prediction Metric o

SCDxP Training Samples S

Find model parameters m € M such that the expected
E(o(f(d,m),G(d))) is minimized.
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Deep Learning vs Shallow Learning
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Hand crafted Features
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Deep Learning vs Shallow Learning

Predictor Predictor

I I

Hand crafted Features Learned Features

Traditional machine

learning Deep Learning
= Mostly convex, provably tractable = Mostly NP-Hard
= Special purpose solvers = General purpose solvers
= Non-layered architectures =« Hierarchical models
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Deep Learning for Mizar Lemma Selection [Alemi+2016]

Embed all lemmas into R" using an LSTM
= Embed conjecture into R" using an LSTM
= Simple classifier on top of concatenated embeddings

= Trained to estimate usefulness on positive and negative examples

Statement to be proved Potential Premise

l |

Embedding network Embedding network

— =

Combiner network

J

Classifier/Ranker
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E-Prover given-clause loop

(processed clauses)

Simpli-
fiable?

Simplify

(unprocessed clauses)

Most important choice: unprocessed clause selection [Schulz 2015]

C. Kaliszyk Deep Network Guided Proof Search 8/ 16



Data Collection

Mizar top-level theorems [Urban 2006]

= Encoded in FOF

32,521 Mizar theorems with > 1 proof
= training-validation split (90%-10%)
= replay with one strategy

Collect all CNF intermediate steps

= and unprocessed clauses when proof is found
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Deep Network Architectures

Logistic loss

Fully Connected 3
| Mex Pooling |

f

Fully Connected | Conv 5 (1024) + RelLU |
(1024 nodes) i

| Conv 5 (1024) + RelLU |

f
| Conv 5 (1024) + RelLU |

Concatenate

Negated conjecture

Clause Embedder embedder T
| Input token embeddings |
Clause tokens Negated conjecture
tokens

Overall network Convolutional Embedding

Non-dilated and dilated convolutions
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Recursive Neural Networks

= Curried representation of first-order statements

= Separate nodes for apply, or, and, not

= Layer weights learned jointly for the same formula

= Embeddings of symbols learned with rest of network

= Tree-RNN and Tree-LSTM models
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Model accuracy

Model | Embedding Size | Accuracy on 50-50% split
Tree-RNN-256 %2 256 77.5%
Tree-RNN-512x1 256 78.1%
Tree-LSTM-256 %2 256 77.0%
Tree-LSTM-256%3 256 77.0%
Tree-LSTM-512x2 256 77.9%
CNN-1024x%3 256 80.3%
*CNN-1024x3 256 78.7%
CNN-1024x3 512 79.7%
CNN-1024x%3 1024 79.8%
WaveNet-256x3x7 256 79.9%
*WaveNet-256x3x7 256 79.9%
WaveNet-1024x3x7 1024 81.0%
WaveNet-640x3x7(20%) 640 81.5%
*WaveNet-640x3x7(20%) 640 79.9%

* = train on unprocessed clauses as negative examples
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Hybrid Heuristic

Already on proved statements performance requires modifications:

100% 100%
—  Pure CNN Auto
o —— Hybrid CNN o WaveNet 640*
80% —  Pure CNN; Auto 80% WaveNet 256
3 — Hyrbid CNN; Auto 3 WaveNet 256*
3 60% 3 60% WaveNet 640
g. g' CNN
2 2 CNN*
g 40% g 40%
3 K;
20% 20%
09 09 _
10 10° 10° 10° 10 10° 107 10°
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Harder Mizar top-level statements

Model | DeepMath 1 | DeepMath 2 | Union of 1 and 2 |
Auto 578 581 674
*WaveNet 640 644 612 767
*WaveNet 256 692 712 864
WaveNet 640 629 685 997
*CNN 905 812 1,057
CNN 839 935 1,101
| Total (unique) | 1,451 | 1,458 | 1,712

Overall proved 7.4% of the harder statements
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Summary

Guiding superposition proof

= Deep network clause ranking

Performance

= Batching (evaluate clauses together)
= Hybrid heuristic
= Specialized hardware could help?

Deep network models

= Accuracy
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