

Deep Network Guided Proof Search

Sarah Loos Geoffrey Irving Christian Szegedy Cezary Kaliszyk

LPAR 2017, Maun

May 8, 2017

Large Formalizations

AFP: 64K lemmas, 593K LoC	[Nipkow+2015]
 seL4: 49K lemmas, 400K LoC 	[Klein+2014]
 Flyspeck: 27K lemmas, 2B intermediate steps 	[Hales+2016]
Problems handled by ATPs	
 Avatar 	[Voronkow 2015]
 E-prover history mining 	[Schulz 2016]
 SAT traces are big data 	

Little use of machine learning

Fast progress in machine learning

Tasks involving logical inference

- Natural language question answering
- Knowledge base completion
- Automated translation

Games

- AlphaGo problems similar to proving
 - Node evaluation
 - Policy decisions

Computer Vision

Better than human performance on some tasks

[Sukhbaatar+2015]

[Socher+2013]

[Wu+2016]

[Silver+2016]

[Russakovsky+2015]

Machine Learning in Theorem Proving so far

Predict Statement Dependencies

- Premise selection and relevance in ATPs
- Heuristics, learning and deep learning useful

Estimate Statement Usefulness

Heuristics and simple learning methods

Propose Useful Conjectures

Supervised Learning Task

Ground truth <i>G</i>	Assume $G: D \to P$
Model architecture f	$f:D\times M\to P$
Prediction Metric σ	$\sigma: P \times P \to \mathbb{R}$
Training Samples S	$S \subset D \times P$

Find model parameters $m \in M$ such that the expected $\mathbb{E}(\sigma(f(d, m), G(d)))$ is minimized.

Deep Learning vs Shallow Learning

Deep Learning vs Shallow Learning

Deep Learning vs Shallow Learning

- Embed all lemmas into \mathbb{R}^n using an LSTM
- Embed conjecture into \mathbb{R}^n using an LSTM
- Simple classifier on top of concatenated embeddings
- Trained to estimate usefulness on positive and negative examples

E-Prover given-clause loop

Most important choice: unprocessed clause selection

[Schulz 2015]

Mizar top-level theorems

Encoded in FOF

32,521 Mizar theorems with ≥ 1 proof

- training-validation split (90%-10%)
- replay with one strategy

Collect all CNF intermediate steps

and unprocessed clauses when proof is found

[Urban 2006]

Deep Network Architectures

Non-dilated and dilated convolutions

- Curried representation of first-order statements
- Separate nodes for apply, or, and, not
- Layer weights learned jointly for the same formula
- Embeddings of symbols learned with rest of network
- Tree-RNN and Tree-LSTM models

Model accuracy

Model	Embedding Size	Accuracy on 50-50% split
Tree-RNN-256×2	256	77.5%
Tree-RNN-512×1	256	78.1%
Tree-LSTM-256×2	256	77.0%
Tree-LSTM-256×3	256	77.0%
Tree-LSTM-512×2	256	77.9%
CNN-1024×3	256	80.3%
*CNN-1024×3	256	78.7%
CNN-1024×3	512	79.7%
CNN-1024×3	1024	79.8%
WaveNet-256×3×7	256	79.9%
*WaveNet-256×3×7	256	79.9%
WaveNet-1024×3×7	1024	81.0%
WaveNet-640×3×7(20%)	640	81.5%
*WaveNet-640×3×7(20%)	640	79.9%

 \star = train on unprocessed clauses as negative examples

Already on proved statements performance requires modifications:

Model	DeepMath 1	DeepMath 2	Union of 1 and 2
Auto	578	581	674
*WaveNet 640	644	612	767
∗WaveNet 256	692	712	864
WaveNet 640	629	685	997
*CNN	905	812	1,057
CNN	839	935	1,101
Total (unique)	1,451	1,458	1,712

Overall proved 7.4% of the harder statements

Guiding superposition proof

Deep network clause ranking

Performance

- Batching (evaluate clauses together)
- Hybrid heuristic
- Specialized hardware could help?

Deep network models

Accuracy

References

A. A. Alemi, F. Chollet, G. Irving, N. Een, C. Szegedy, and J. Urban.

DeepMath-Deep sequence models for premise selection. In Advances in Neural Information Processing Systems, pages 2235–2243, 2016.

Mizar: State-of-the-art and beyond.

In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Intelligent Computer Mathematics - International Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015, Proceedings, volume 9150 of LNCS, pages 261–279. Springer, 2015.

J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban.

Hammering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

C. Kaliszyk and J. Urban.

FEMaLeCoP: Fairly efficient machine learning connection prover.

In M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, volume 9450 of LNCS, pages 88–96. Springer, 2015.

C. Kaliszyk and J. Urban.

MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245-256, 2015.

C. Kaliszyk, J. Urban, and J. Vyskocil.

Efficient semantic features for automated reasoning over large theories.

In Q. Yang and M. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 3084–3090. AAAI Press, 2015.

D. Whalen.

Holophrasm: a neural automated theorem prover for higher-order logic. arXiv preprint arXiv:1608.02644, 2016.

