Proving Uniformity and Independence

 by Self-Composition and CouplingGilles Barthe
Thomas Espitau Benjamin Grégoire

Justin Hsu*
Pierre-Yves Strub

A puzzle

A random walk on a cycle

- Start at position $s \in\{0,1, \ldots, n-1\}$
- Each iteration, flip a fair coin
- Heads: increment position (modulo n)
- Tails decrement position (modulo n)
- Return: last edge $(r, r+1)$ to be traversed

A question

What is the distribution of the returned edge, and how does it depend on the starting position s?

A puzzle

Somewhat surprisingly
Distribution of final edge is uniform: Starting position s doesn't matter!

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

$$
\operatorname{Pr}[X=w]=\operatorname{Pr}[X=v]
$$

in output distribution.

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

$$
\operatorname{Pr}[X=w]=\operatorname{Pr}[X=v]
$$

in output distribution.
Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

$$
\operatorname{Pr}[X=w]=\operatorname{Pr}[X=v]
$$

in output distribution.
Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Can be quite subtle to verify!

The idea today

Use logic for relational verification to verify uniformity and independence

A crash course:
the relational logic pRHL

A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling
$c::=x \leftarrow e \mid x \leftrightarrow$ flip $(p) \mid$ if e then c else $c \mid$ while e do $c \mid$ skip $\mid c ; c$

A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling
$c::=x \leftarrow e|x \leqslant \operatorname{flip}(p)|$ if e then c else $c \mid$ while e do $c \mid$ skip $\mid c ; c$
pRHL is a program logic that is:

- Probabilistic: Programs can draw samples

A curious program logic: pRHL [Bathe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling
$c::=x \leftarrow e|x \stackrel{\text { si }}{ } \operatorname{flip}(p)|$ if e then c else $c \mid$ while e do $c \mid$ skip $\mid c ; c$
pRHL is a program logic that is:

- Probabilistic: Programs can draw samples
- Relational: Describe executions of two programs

Judgments in pRHL

$\{P($ in $\langle 1\rangle$, in $\langle 2\rangle)\} c \sim c^{\prime}\{Q($ out $\langle 1\rangle$, out $\langle 2\rangle)\}$

Judgments in pRHL

$$
\{P(\text { in }\langle 1\rangle, \text { in }\langle 2\rangle)\} c \sim c^{\prime}\{Q(\text { out }\langle 1\rangle, \text { out }\langle 2\rangle)\}
$$

Assertions

- Non-probabilistic
- FO formulas over program variables tagged with $\langle 1\rangle$ or $\langle 2\rangle$

Judgments in pRHL

$$
\{P(\text { in }\langle 1\rangle, \text { in }\langle 2\rangle)\} c \sim c^{\prime}\{Q(\text { out }\langle 1\rangle, \text { out }\langle 2\rangle)\}
$$

Assertions

- Non-probabilistic
- FO formulas over program variables tagged with $\langle 1\rangle$ or $\langle 2\rangle$

Judgments in pRHL

$$
\{P(\text { in }\langle 1\rangle, \text { in }\langle 2\rangle)\} c \sim c^{\prime}\{Q(\text { out }\langle 1\rangle, \text { out }\langle 2\rangle)\}
$$

Assertions

- Non-probabilistic
- FO formulas over program variables tagged with $\langle 1\rangle$ or $\langle 2\rangle$

Deep connection to probabilistic couplings

- Proofs specify how to correlate random samplings in runs
- Reduce sources of randomness, simplify verification

For our purposes today: equality of distributions

If this is provable:

$$
\vdash\{P\} c \sim c^{\prime} \quad\left\{e\langle 1\rangle=e^{\prime}\langle 2\rangle\right\}
$$

Then:

On any two input memories related by P, the distribution of e in the first output is equal to the distribution of e^{\prime} in the second output.

In particular: express equality of probabilities

If this is provable for booleans b, b^{\prime} :

$$
\vdash\{P\} \quad c \sim c^{\prime}\left\{b\langle 1\rangle=b^{\prime}\langle 2\rangle\right\}
$$

Then:

On any two input memories related by P, the probability of b in the first output is equal to the probability of b^{\prime} in the second output.

Random sampling rules in pRHL

Simplified version

FLIPEQ

$$
\vdash\{\top\} x \ll \mathbb{f l i p}(p) \sim x^{\prime} \mathbb{\&} \operatorname{flip}(p)\left\{x\langle 1\rangle=x^{\prime}\langle 2\rangle\right\}
$$

FLIPNEG

$$
\overline{\vdash\{T\} x \& \in \operatorname{fip}(p) \sim x^{\prime} \& \operatorname{flip}(1-p)\left\{x\langle 1\rangle=\neg x^{\prime}\langle 2\rangle\right\}}
$$

Random sampling rules in pRHL

Simplified version

FLIPEQ $\underset{\vdash\{T\} x \& \operatorname{slip}(p) \sim x^{\prime} \& \operatorname{flip}(p)\left\{x\langle 1\rangle=x^{\prime}\langle 2\rangle\right\}}{\digamma}$
FLIPNEG

$$
\overline{\vdash\{T\} x \& \operatorname{flip}(p) \sim x^{\prime} \& \operatorname{slip}(1-p)\left\{x\langle 1\rangle=\neg x^{\prime}\langle 2\rangle\right\}}
$$

Reading: for any $p \in[0,1]$,

1. [FLIPEQ]: Distributions of $\operatorname{flip}(p)$ and $\operatorname{flip}(p)$ are equal
2. [FLIPNEG]: Distributions of $\operatorname{flip}(p)$ and negated $\operatorname{flip}(1-p)$ are equal

Rest of rules are standard (\approx Hoare logic)

Assignments
AsSN $\overline{\vdash\left\{Q\left[e\langle 1\rangle, e^{\prime}\langle 2\rangle / x\langle 1\rangle, x^{\prime}\langle 2\rangle\right]\right\} \quad x \leftarrow e_{1} \sim x^{\prime} \leftarrow e_{2}\{Q\}}$

Sequencing

$$
\text { SEQ } \frac{\vdash\{P\} c_{1} \sim c_{1}^{\prime}\{Q\} \quad \vdash\{Q\} c_{2} \sim c_{2}^{\prime}\{R\}}{\vdash\{P\} c_{1} ; c_{2} \sim c_{1}^{\prime} ; c_{2}^{\prime}\{R\}}
$$

Loops
While $\frac{\vdash\{P \wedge b\langle 1\rangle\} c \sim c^{\prime}\{P\} \quad \mid=P \Longrightarrow b\langle 1\rangle=b^{\prime}\langle 2\rangle}{\vdash\{P\} \text { while } b \text { do } c \sim \text { while } b^{\prime} \text { do } c^{\prime}\{P \wedge \neg b\langle 1\rangle\}}$

Rest of rules are standard (\approx Hoare logic)

Assignments
AsSN $\overline{\vdash\left\{Q\left[e\langle 1\rangle, e^{\prime}\langle 2\rangle / x\langle 1\rangle, x^{\prime}\langle 2\rangle\right]\right\} \quad x \leftarrow e_{1} \sim x^{\prime} \leftarrow e_{2}\{Q\}}$

Sequencing

$$
\text { SEQ } \frac{\vdash\{P\} c_{1} \sim c_{1}^{\prime}\{Q\} \quad \vdash\{Q\} \quad c_{2} \sim c_{2}^{\prime}\{R\}}{\vdash\{P\} c_{1} ; c_{2} \sim c_{1}^{\prime} ; c_{2}^{\prime}\{R\}}
$$

Loops
While $\frac{\vdash\{P \wedge b\langle 1\rangle\} c \sim c^{\prime}\{P\} \quad \models P \Longrightarrow b\langle 1\rangle=b^{\prime}\langle 2\rangle}{\vdash\{P\} \text { while } b \text { do } c \sim \text { while } b^{\prime} \text { do } c^{\prime}\{P \wedge \neg b\langle 1\rangle\}}$

Benefits of pRHL

Probabilistic properties without probabilistic reasoning

- Abstract away all probabilities
- All reasoning is about relation between samples

Highly similar to Hoare logic

- Most things "just work"
- Compositional reasoning

Benefits of pRHL

Probabilistic properties without probabilistic reasoning

- Abstract away all probabilities
- All reasoning is about relation between samples

Highly similar to Hoare logic

- Most things "just work"
- Compositional reasoning

Apply to non-relational properties, like uniformity and independence.

Verifying uniformity:
 simulating a fair coin

The algorithm

Goal

Generate one fair coin flip, using only coin flips with a fixed bias $p \in(0,1)$.

Procedure

1. Flip two coins with bias p
2. Re-flip as long as they are equal
3. Return the first coin flip the first time they are different

In code

Consider the program fair:

$$
\begin{aligned}
& x \leftarrow t t ; \\
& y \leftarrow t t ; \\
& \text { while } x=y \text { do } \\
& \qquad x \& \mathbb{\&} \operatorname{flip}(p) ; \\
& y \& \in \operatorname{flip}(p) ; \\
& \text { return }(x)
\end{aligned}
$$

To show: generates fair coin flip

Distribution of return value is uniform

Observation: uniformity can be proved in pRHL

For every two booleans w, v, show:

$$
\vdash\{p\langle 1\rangle=p\langle 2\rangle\} \text { fair } \sim \text { fair }\{(x\langle 1\rangle=w) \Longleftrightarrow(x\langle 2\rangle=v)\}
$$

Reading: for every two booleans w, v,

$$
\operatorname{Pr}[x=w]=\operatorname{Pr}[x=v] \quad \text { in the output of fair. }
$$

Four choices in all for w, v

- We show the cases with $w \neq v$

Step 1: rearrange program

Two equivalent programs: fair and fair ${ }^{\prime}$

$$
\begin{aligned}
& x \leftarrow t t ; \\
& y \leftarrow t t ; \\
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{flip}(p) ; \\
& \qquad y \& \operatorname{flip}(p) ; \\
& \text { return }(x)
\end{aligned}
$$

Step 1: rearrange program

Two equivalent programs: fair and fair ${ }^{\prime}$

$$
\begin{aligned}
& x \leftarrow t t ; \\
& y \leftarrow t t ; \\
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{flip}(p) ; \\
& \qquad y \& \operatorname{flip}(p) ; \\
& \text { return }(x)
\end{aligned}
$$

Step 1: rearrange program

Two equivalent programs: fair and fair ${ }^{\prime}$

$$
\begin{aligned}
& x \leftarrow t t ; \\
& y \leftarrow t t ; \\
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{flip}(p) ; \\
& \qquad y \& \operatorname{flip}(p) ; \\
& \text { return }(x)
\end{aligned}
$$

Step 1: rearrange program

Two equivalent programs: fair and fair ${ }^{\prime}$

$$
\begin{aligned}
& x \leftarrow t t ; \\
& y \leftarrow t t ; \\
& \text { while } x=y \text { do } \\
& \qquad x \stackrel{\mathbb{s}}{=} \operatorname{flip}(p) ; \\
& y \& \operatorname{flip}^{2}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

For the cases $w \neq v$, suffices to show:

$$
\vdash\{p\langle 1\rangle=p\langle 2\rangle\} \text { fair } \sim \text { fair }^{\prime}\{x\langle 1\rangle=\neg x\langle 2\rangle\}
$$

Step 2: apply the loop rule

while $x=y$ do
$x \stackrel{s}{\leftarrow} \operatorname{flip}(p)$;
$y \stackrel{\&}{ } \operatorname{flip}^{(p)}$;
return (x)

while $x=y$ do

$$
\begin{aligned}
& \quad y \& \operatorname{slip}(p) ; \\
& x \& \operatorname{flip}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

Step 2: apply the loop rule

$$
\begin{aligned}
& \text { while } x=y \text { do } \\
& \qquad x \& \mathbb{S}^{\mathbb{S}} \operatorname{flip}(p) ; \\
& y \& \operatorname{flip}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

In the body: apply [FLIPEQ] for both pairs of samples

Step 2: apply the loop rule

$$
\begin{aligned}
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{flip}(p) ; \\
& y \& \operatorname{sig}^{s}(p) ; \\
& \text { return }(x)
\end{aligned}
$$

$$
\text { while } x=y \text { do }
$$

$$
y \stackrel{\mathbb{s}}{ } \operatorname{flip}(p) ;
$$

$$
x \stackrel{\mathbb{S}}{\mathscr{S}} \text { fip }(p) ;
$$

$$
\text { return }(x)
$$

In the body: apply [FLIPEQ] for both pairs of samples

- We have: $x\langle 1\rangle=y\langle 2\rangle$

Step 2: apply the loop rule

$$
\begin{aligned}
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{slip}(p) ; \\
& y \& \operatorname{flip}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

while $x=y$ do

$$
\begin{aligned}
& \quad y \stackrel{\&}{\&} \operatorname{flip}(p) ; \\
& x \& \in \operatorname{flip}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

In the body: apply [FLIPEQ] for both pairs of samples

- We have: $x\langle 1\rangle=y\langle 2\rangle$
- And: $x\langle 2\rangle=y\langle 1\rangle$

Step 2: apply the loop rule

$$
\begin{aligned}
& \text { while } x=y \text { do } \\
& \qquad x \& \operatorname{flip}(p) ; \\
& y \& \operatorname{flip}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \quad y \& \in \operatorname{flip}(p) ; \\
& x \& \operatorname{sim}(p) ; \\
& \operatorname{return}(x)
\end{aligned}
$$

In the body: apply [FLIPEQ] for both pairs of samples

- We have: $x\langle 1\rangle=y\langle 2\rangle$
- And: $x\langle 2\rangle=y\langle 1\rangle$

Establishes main invariant:

$$
x\langle 2\rangle=(\text { if } x\langle 1\rangle=y\langle 1\rangle \text { then } y\langle 2\rangle \text { else } \neg x\langle 1\rangle)
$$

Step 3: putting it all together

Applying [Assn], [Sea] shows:

$$
\vdash\{p\langle 1\rangle=p\langle 2\rangle\} \text { fair } \sim \text { fair }\{(x\langle 1\rangle=w) \Longleftrightarrow(x\langle 2\rangle=v)\}
$$

when $w \neq v$; can also show same judgment when $w=v$. Conclude

fair returns a uniform boolean

Extensions:
verifying independence

Verifying independence: the easier way

Observation: reduce independence to uniformity

(x, y) is uniform over pairs
 x and y are independent

Limitation

- Only can show independence for uniform variables

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.

Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$
c \sim c[1] ; c[2]
$$

Independence of two variables X, Y
For any two values w, v, we have:

$$
\operatorname{Pr}[X=w \wedge Y=v]=\operatorname{Pr}[X=w] \cdot \operatorname{Pr}[Y=v]
$$

in output distribution.
Benefits

- Can prove independence for non-uniform variables
- Similar ideas can cover conditional independence

Summing up

See the paper for

Lots more examples

- Cycle random walk
- Pairwise and k-wise independence
- Bayesian network
- Ballot theorem

Details about the implementation

- Most examples formalized in EasyCrypt framework

Future directions

- Automate this approach
- Explore relational verification for non-relational properties
- Integrate with more general probabilistic verification tools

Proving Uniformity and Independence

 by Self-Composition and CouplingGilles Barthe
Thomas Espitau Benjamin Grégoire

Justin Hsu*
Pierre-Yves Strub

