
Gilles Barthe
Thomas Espitau

Benjamin Grégoire
Justin Hsu*

Pierre-Yves Strub

Proving Uniformity and Independence
by Self-Composition and Coupling

1

A puzzle
A random walk on a cycle

I Start at position s ∈ {0, 1, . . . , n− 1}
I Each iteration, flip a fair coin

– Heads: increment position (modulo n)
– Tails decrement position (modulo n)

I Return: last edge (r, r + 1) to be traversed

A question

What is the distribution of the
returned edge, and how does it

depend on the starting position s?

2

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

A puzzle

1

2 3

4

50

S

Somewhat surprisingly

Distribution of final edge is uniform:
Starting position s doesn’t matter!

3

Basic properties of probabilistic programs
Uniformity of a variable X

For any two values w, v in the (finite) range of X , we have:

Pr[X = w] = Pr[X = v]
in output distribution.

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Can be quite subtle to verify!

4

Basic properties of probabilistic programs
Uniformity of a variable X

For any two values w, v in the (finite) range of X , we have:

Pr[X = w] = Pr[X = v]
in output distribution.

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Can be quite subtle to verify!

4

Basic properties of probabilistic programs
Uniformity of a variable X

For any two values w, v in the (finite) range of X , we have:

Pr[X = w] = Pr[X = v]
in output distribution.

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Can be quite subtle to verify!

4

The idea today

Use logic for relational verification
to verify uniformity
and independence

5

A crash course:
the relational logic pRHL

6

A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

c ::= x← e | x $← flip(p) | if e then c else c | while e do c | skip | c; c

pRHL is a program logic that is:

I Probabilistic: Programs can draw samples
I Relational: Describe executions of two programs

7

A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

c ::= x← e | x $← flip(p) | if e then c else c | while e do c | skip | c; c

pRHL is a program logic that is:
I Probabilistic: Programs can draw samples

I Relational: Describe executions of two programs

7

A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

c ::= x← e | x $← flip(p) | if e then c else c | while e do c | skip | c; c

pRHL is a program logic that is:
I Probabilistic: Programs can draw samples
I Relational: Describe executions of two programs

7

Judgments in pRHL

{P (in〈1〉, in〈2〉)} c ∼ c′ {Q(out〈1〉, out〈2〉)}

Assertions
I Non-probabilistic
I FO formulas over program variables tagged with 〈1〉 or 〈2〉

Deep connection to probabilistic couplings
I Proofs specify how to correlate random samplings in runs
I Reduce sources of randomness, simplify verification

8

Judgments in pRHL

{P (in〈1〉, in〈2〉)} c ∼ c′ {Q(out〈1〉, out〈2〉)}

Assertions
I Non-probabilistic
I FO formulas over program variables tagged with 〈1〉 or 〈2〉

Deep connection to probabilistic couplings
I Proofs specify how to correlate random samplings in runs
I Reduce sources of randomness, simplify verification

8

Judgments in pRHL

{P (in〈1〉, in〈2〉)} c ∼ c′ {Q(out〈1〉, out〈2〉)}

Assertions
I Non-probabilistic
I FO formulas over program variables tagged with 〈1〉 or 〈2〉

Deep connection to probabilistic couplings
I Proofs specify how to correlate random samplings in runs
I Reduce sources of randomness, simplify verification

8

Judgments in pRHL

{P (in〈1〉, in〈2〉)} c ∼ c′ {Q(out〈1〉, out〈2〉)}

Assertions
I Non-probabilistic
I FO formulas over program variables tagged with 〈1〉 or 〈2〉

Deep connection to probabilistic couplings
I Proofs specify how to correlate random samplings in runs
I Reduce sources of randomness, simplify verification

8

For our purposes today: equality of distributions

If this is provable:

` {P} c ∼ c′ {e〈1〉 = e′〈2〉}

Then:

On any two input memories related by P , the
distribution of e in the first output is equal to the
distribution of e′ in the second output.

9

In particular: express equality of probabilities

If this is provable for booleans b, b′:

` {P} c ∼ c′ {b〈1〉 = b′〈2〉}

Then:

On any two input memories related by P , the
probability of b in the first output is equal to the
probability of b′ in the second output.

10

Random sampling rules in pRHL

Simplified version

FlipEq
` {>} x $← flip(p) ∼ x′ $← flip(p) {x〈1〉 = x′〈2〉}

FlipNeg
` {>} x $← flip(p) ∼ x′ $← flip(1− p) {x〈1〉 = ¬x′〈2〉}

Reading: for any p ∈ [0, 1],

1. [FlipEq]: Distributions of flip(p) and flip(p) are equal
2. [FlipNeg]: Distributions of flip(p) and negated flip(1− p)
are equal

11

Random sampling rules in pRHL

Simplified version

FlipEq
` {>} x $← flip(p) ∼ x′ $← flip(p) {x〈1〉 = x′〈2〉}

FlipNeg
` {>} x $← flip(p) ∼ x′ $← flip(1− p) {x〈1〉 = ¬x′〈2〉}

Reading: for any p ∈ [0, 1],

1. [FlipEq]: Distributions of flip(p) and flip(p) are equal
2. [FlipNeg]: Distributions of flip(p) and negated flip(1− p)
are equal

11

Rest of rules are standard (≈ Hoare logic)
Assignments

Assn
` {Q[e〈1〉, e′〈2〉/x〈1〉, x′〈2〉]} x← e1 ∼ x′ ← e2 {Q}

Sequencing

Seq
` {P} c1 ∼ c′

1 {Q} ` {Q} c2 ∼ c′
2 {R}

` {P} c1; c2 ∼ c′
1; c′

2 {R}

Loops

While
` {P ∧ b〈1〉} c ∼ c′ {P} |= P =⇒ b〈1〉 = b′〈2〉
` {P} while b do c ∼ while b′ do c′ {P ∧ ¬b〈1〉}

12

Rest of rules are standard (≈ Hoare logic)
Assignments

Assn
` {Q[e〈1〉, e′〈2〉/x〈1〉, x′〈2〉]} x← e1 ∼ x′ ← e2 {Q}

Sequencing

Seq
` {P} c1 ∼ c′

1 {Q} ` {Q} c2 ∼ c′
2 {R}

` {P} c1; c2 ∼ c′
1; c′

2 {R}

Loops

While
` {P ∧ b〈1〉} c ∼ c′ {P} |= P =⇒ b〈1〉 = b′〈2〉
` {P} while b do c ∼ while b′ do c′ {P ∧ ¬b〈1〉}

12

Benefits of pRHL

Probabilistic properties without probabilistic reasoning
I Abstract away all probabilities
I All reasoning is about relation between samples

Highly similar to Hoare logic
I Most things “just work”
I Compositional reasoning

Apply to non-relational properties,
like uniformity and independence.

13

Benefits of pRHL

Probabilistic properties without probabilistic reasoning
I Abstract away all probabilities
I All reasoning is about relation between samples

Highly similar to Hoare logic
I Most things “just work”
I Compositional reasoning

Apply to non-relational properties,
like uniformity and independence.

13

Verifying uniformity:
simulating a fair coin

14

The algorithm

Goal
Generate one fair coin flip, using only coin flips with a fixed
bias p ∈ (0, 1).

Procedure
1. Flip two coins with bias p

2. Re-flip as long as they are equal
3. Return the first coin flip the first time they are different

15

In code
Consider the program fair :

x← tt;
y ← tt;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

To show: generates fair coin flip

Distribution of return
value is uniform

16

Observation: uniformity can be proved in pRHL

For every two booleans w, v, show:

` {p〈1〉 = p〈2〉} fair ∼ fair {(x〈1〉 = w) ⇐⇒ (x〈2〉 = v)}

Reading: for every two booleans w, v,

Pr[x = w] = Pr[x = v] in the output of fair .

Four choices in all for w, v

I We show the cases with w 6= v

17

Step 1: rearrange program

Two equivalent programs: fair and fair ′

x← tt; x← tt;
y ← tt; y ← tt;
while x = y do while x = y do

x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

For the cases w 6= v, suffices to show:

` {p〈1〉 = p〈2〉} fair ∼ fair ′ {x〈1〉 = ¬x〈2〉}

18

Step 1: rearrange program

Two equivalent programs: fair and fair ′

x← tt; x← tt;
y ← tt; y ← tt;
while x = y do while x = y do

x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

For the cases w 6= v, suffices to show:

` {p〈1〉 = p〈2〉} fair ∼ fair ′ {x〈1〉 = ¬x〈2〉}

18

Step 1: rearrange program

Two equivalent programs: fair and fair ′

x← tt; x← tt;
y ← tt; y ← tt;
while x = y do while x = y do

x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

For the cases w 6= v, suffices to show:

` {p〈1〉 = p〈2〉} fair ∼ fair ′ {x〈1〉 = ¬x〈2〉}

18

Step 1: rearrange program

Two equivalent programs: fair and fair ′

x← tt; x← tt;
y ← tt; y ← tt;
while x = y do while x = y do

x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

For the cases w 6= v, suffices to show:

` {p〈1〉 = p〈2〉} fair ∼ fair ′ {x〈1〉 = ¬x〈2〉}

18

Step 2: apply the loop rule

while x = y do while x = y do
x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

In the body: apply [FlipEq] for both pairs of samples

I We have: x〈1〉 = y〈2〉
I And: x〈2〉 = y〈1〉

Establishes main invariant:

x〈2〉 = (if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉)

19

Step 2: apply the loop rule

while x = y do while x = y do
x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

In the body: apply [FlipEq] for both pairs of samples

I We have: x〈1〉 = y〈2〉
I And: x〈2〉 = y〈1〉

Establishes main invariant:

x〈2〉 = (if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉)

19

Step 2: apply the loop rule

while x = y do while x = y do
x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

In the body: apply [FlipEq] for both pairs of samples
I We have: x〈1〉 = y〈2〉

I And: x〈2〉 = y〈1〉

Establishes main invariant:

x〈2〉 = (if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉)

19

Step 2: apply the loop rule

while x = y do while x = y do
x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

In the body: apply [FlipEq] for both pairs of samples
I We have: x〈1〉 = y〈2〉
I And: x〈2〉 = y〈1〉

Establishes main invariant:

x〈2〉 = (if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉)

19

Step 2: apply the loop rule

while x = y do while x = y do
x $← flip(p); y $← flip(p);
y $← flip(p); x $← flip(p);

return(x) return(x)

In the body: apply [FlipEq] for both pairs of samples
I We have: x〈1〉 = y〈2〉
I And: x〈2〉 = y〈1〉

Establishes main invariant:

x〈2〉 = (if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉)

19

Step 3: putting it all together

Applying [Assn], [Seq] shows:

` {p〈1〉 = p〈2〉} fair ∼ fair {(x〈1〉 = w) ⇐⇒ (x〈2〉 = v)}

when w 6= v; can also show same judgment when w = v.

Conclude

fair returns a uniform boolean

20

Extensions:
verifying independence

21

Verifying independence: the easier way

Observation: reduce independence to uniformity

(x, y) is uniform over pairs
⇓

x and y are independent

Limitation
I Only can show independence for uniform variables

22

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Verifying independence: the harder way
Use self-composition

I Let c[1], c[2] be two copies of c with disjoint variables
I Prove a pRHL judgment relating

c ∼ c[1]; c[2]

Independence of two variables X, Y

For any two values w, v, we have:

Pr[X = w ∧ Y = v] = Pr[X = w] · Pr[Y = v]
in output distribution.

Benefits
I Can prove independence for non-uniform variables
I Similar ideas can cover conditional independence

23

Summing up

24

See the paper for

Lots more examples
I Cycle random walk
I Pairwise and k-wise independence
I Bayesian network
I Ballot theorem

Details about the implementation
I Most examples formalized in EasyCrypt framework

25

Future directions

• Automate this approach

• Explore relational verification
for non-relational properties

• Integrate with more general
probabilistic verification tools

26

Gilles Barthe
Thomas Espitau

Benjamin Grégoire
Justin Hsu*

Pierre-Yves Strub

Proving Uniformity and Independence
by Self-Composition and Coupling

27

