
Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Coq without Casts :
A complete proof of Coq Modulo Theory

Jean-Pierre Jouannaud and Pierre-Yves Strub

LIX, Ecole Polytechnique, Université Paris-Saclay

LPAR, May 12th, 2017

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Content

1 Motivation and Goal

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,

Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
P

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,

Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,

Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

N

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

N

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

NY

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.

Conversion is purely intensional to ensure decidability.

Workflow of Coq

User

Libraries

and

Tactics

Type

Check
Type

Infer.

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

NY

Γ ` pi : Pi
′

Γ ` Pi ' Pi
′ : u

Γ ` pi : Pi

Rich libraries and tactics provide strong functionality,
Small kernel ensures reliability.
Conversion is purely intensional to ensure decidability.

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 (*dword 0*) => dword0 (*dword 0*)
| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x (*dword 1*) => dword1 x (*dword 1*)
| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2 (*dword n1+n2*) =>
dwordA (rev dw2) (rev dw1) (*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

dwordA (rev ds2) (rev ds1)
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.
The proof is carried out repeatedly at runtime.
Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

dwordA (rev ds2) (rev ds1)
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.

The proof is carried out repeatedly at runtime.
Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

dwordA (rev ds2) (rev ds1)
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.

The proof is carried out repeatedly at runtime.
Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

cast (addC n2 n1) (dwordA (rev ds2) (rev ds1))
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.

The proof is carried out repeatedly at runtime.
Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

cast (addC n2 n1) (dwordA (rev ds2) (rev ds1))
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.
The proof is carried out repeatedly at runtime.

Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Problems using dependent types

Solution in Coq

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 => dword0
| dword1 x => dword1 x
| dwordA n1 n2 ds1 ds2 =>

cast (addC n2 n1) (dwordA (rev ds2) (rev ds1))
end.

Definition cast: forall m n, m=n->dword m->dword n.

Force an extra user’s proof of equality.
The proof is carried out repeatedly at runtime.
Equality generates explicit computations in proofs.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n1

6=

Where does the problem originate from ?

The kernel implements the Calculus of Inductive Constructions
(CIC): the conversion rule carries out the conversion check:

Γ ` t : P ′ Γ ` P ' P ′ : s
Γ ` t : P

' is the closure of computations (→), which is intensional.
Conversion is decided thanks to the Church-Rosser property:

P P1 ... Pn P ′

P ↓= P ′ ↓

n1 + n2

n1 + n2

n2 + n1

n2 + n16=

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Content

2 Coq Modulo Theory

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

DP
Fails

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

DP
Fails

Y/N

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

N

DP
Fails

Y/N

Solution : CoqMT

Build in decidable equational theories !
A decision procedure automatically checks equality in the theory.

User

Library

and

Tactic

Type

Check
Type

Infer

Conversion

Check

Kernel

Coq

CoqTop
p P

pi

Pi

Pi
′

NY

DP
Fails

Y/N

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0 (*dword 0*) => dword0 (*dword 0*)
| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x (*dword 1*) => dword1 x (*dword 1*)
| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2 (*dword n1+n2*) =>
dwordA (rev dw2) (rev dw1) (*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded

The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:

I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.

The result should be correct : consistency.
Requirements needed to ensure the above two:

I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.

Requirements needed to ensure the above two:

I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).

I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.

I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).

I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .

Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m=T

I =T should be correct : certification of =T .

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type

Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)

Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements

Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra

=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable

Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t

Elimination rules match their argument of type o modulo =T

Definition of CICω(T)

CICω(T) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type
Freeness : ground constructor terms are all different (in =T)
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T

Definition of CICω(T): Pseudo-Terms

u, v ,U,V ::= Prop | Typej (Universes)
| V | u v | λ[x : U]. v | ∀[x : U].V (CC)
| o | C | D | Elimo(U,−→u , v) (T -Inductives)

Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.

Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.

Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.

Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.

Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.

Motivation and Goal Coq Modulo Theory Meta-Theory of Coq Modulo Theory

Content

3 Meta-Theory of Coq Modulo Theory

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory

Consistency and DTC proofs of fragments of CICω(T)

CICω : Paper proof of consistency and DTC
B. Werner, ”Sets in types, types in sets”, in TACS : 1997

CIC 1(T): Implementation, paper proof of consistency and DTC,
P.-Y. Strub, in CSL : 2010

CICω(T): Implementation, paper proof of consistency and DTC
(restricted to weak-T -elimination)
Barras, Jouannaud, Strub, Wang, “CoqMTU” in LICS : 2011

CICω(T): Formal proof of Consistency,
Barras, Wang, in CSL : 2012

CICω(T): Paper proof of DTC,
Jouannaud, Strub, in LPAR : 2017

CICω(T): Implementation, on-going.

Strong normalization proof

Let T = {t → C(u) : C(u) simplifies t}

Lemma
T is a confluent and terminating rewriting system for ↔∗T .

Lemma
−→βιT

⊆ −→+
βιT where −→βιT

def= −→β ∪−→ι ∪−→T .

We prove that −→βιT is SN by induction over −→βι ∪�.

This proof uses syntactic arguments only, in particular the
left-linearity of the rules in {β, ι} which provide with key
commutation properties between {β, ι} and T .

Is strong elimination modulo needed in practice ? (1/2)

Assume we have a type constructor poly : Type → Type such
that poly K stands for the type of polynomials in 1 indeterminate
over K, we can construct the type mpoly K n, of multinomials
over n indeterminates over K as:

Fixpoint mpoly (K : ring) (n : nat) : Type :=
match n with 0 => K | S p => poly (mpoly K p).

Is elimination modulo needed in practice ? (2/2)

In the future version of CoqMT justified here, not only are
mpoly K (n+1+p) and mpoly K (p+n+1) identified, which is not
the case in Coq nor in the previous version of CoqMT, but
because (S (n+p)) simplifies n+1+p and p+n+1, they both
compute to poly (mpoly K (n+p)), providing some canonical
form of our initial type which highlights that poly is iterated at
least once.

This would allow, for instance, to easily use properties on
multivariate polynomials without relying on unnecessary type casts.
Such needs arise quite naturally in the proof of the symmetric
polynomials fundamental lemma, where all type casts occurring in
the proof can be removed in CoqMT.

Conclusion: when are casts needed ?

No type casts are ever needed in CoqMT provided
the decidable theory T contains the necessary
syntax to express all equalities on dependent types
whose proofs are needed to type the user’s
development.

Casts become needed when the theory T is
undecidable.

Conclusion: when are casts needed ?

No type casts are ever needed in CoqMT provided
the decidable theory T contains the necessary
syntax to express all equalities on dependent types
whose proofs are needed to type the user’s
development.

Casts become needed when the theory T is
undecidable.

Last slide

Thank you for your attention

	Motivation and Goal
	Coq : A tool implementing intensional type theory
	Problems using dependent types

	Coq Modulo Theory
	Extending Coq with Decidable Equational Theory
	CIC(T)

	Meta-Theory of Coq Modulo Theory
	Formal Proof of Coq Modulo Theory
	Are Casts ever needed

