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Problems with Dependent Types

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.
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Introduction to CoqMT

Type-checking dependent definitions in CoqMT

Inductive dword : nat -> Type :=
| dword0 : dword 0
| dword1 : T -> dword 1
| dwordA : forall n p, dword n -> dword p -> dword (n + p).

Fixpoint rev n (ds : dword n) : (dword n) :=
match ds with
| dword0

(*dword 0*)

=> dword0

(*dword 0*)

| dword1 x

(*dword 1*)

=> dword1 x

(*dword 1*)

| dwordA n1 n2 dw1 dw2

(*dword n1+n2*)

=>
dwordA (rev dw2) (rev dw1)

(*dword n2+n1*)

end.

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory



Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded

The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:

I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m

I =T should be correct : certification of =T .
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Soundness of CoqMT

In CoqMT the user can use a predefined theory T or declare
heris own theory T which is then dynamically downloaded
The type checker must returns a result: decidability.
The result should be correct : consistency.
Requirements needed to ensure the above two:
I All computations terminate : strong normalization (SN).
I Order of evaluation is arbitrary : confluence.
I Computations preserve types : subject reduction (SR).
I Conversion is decidable : Church-Rosser modulo T (CRT).

m + (1 + 1) ∗ n ' 2 ∗ n + (2− 1) ∗m

m + 2n 2n + m=T

I =T should be correct : certification of =T .



Definition of CICω(T )

CICω(T ) contains CICω and a T -inductive type o of objects s.t.
o is equipped with first-order constructors C, defined symbols
D, an equality =T , and an eliminator Elimo of the usual type

Freeness : ground constructor terms are all different (in =T )
Non-triviality : The ground constructor term algebra
contains at least two elements
Completeness : the ground term algebra is isomorphic to the
ground constructor term algebra
=T is decidable
Elimination has the usual typing rule

Γ ` t : nat Γ ` P : ∀[x : nat]. {Prop,Type}
Γ ` f0 : P 0 Γ ` fS : ∀[x : nat]. (P x → P (S x))

Γ ` Elimnat(P, f0, fS, t) : P t
Elimination rules match their argument of type o modulo =T
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Definition of CICω(T ): Pseudo-Terms

u, v ,U,V ::= Prop | Typej (Universes)
| V | u v | λ[x : U]. v | ∀[x : U].V (CC)
| o | C | D | Elimo(U,−→u , v) (T -Inductives)



Reductions and Conversion

β-reduction is defined as usual:

(λ[x : U]. v)u →β v{x 7→ u}

ι-reduction is the same as in CIC for normal inductive types

ιT -reduction generalizes pure ι-reduction. For “Presburger”

ElimNat(P, f0, fS, v)→ ιT

{
f0 (1)
fS u ElimNat(P, f0, fS, u) (2)

provided
v =T 0 for case (1), and
exists u, v =T S u and V(u) ⊆ V(v) for case (2)

The conversion relation ' is the reflexive, symmetric and
transitive closure of →β ∪ → ιT ∪ =T =→ β ∪ → ι ∪ =T .

The typing rules are as usual.
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3 Meta-Theory of Coq Modulo Theory

J.-P. Jouannaud, Pierr-Yves Strub LIX, Ecole Polytechnique, Université Paris-Saclay
Coq without Casts : A complete proof of Coq Modulo Theory



Consistency and DTC proofs of fragments of CICω(T )

CICω : Paper proof of consistency and DTC
B. Werner, ”Sets in types, types in sets”, in TACS : 1997

CIC 1(T ): Implementation, paper proof of consistency and DTC,
P.-Y. Strub, in CSL : 2010

CICω(T ): Implementation, paper proof of consistency and DTC
(restricted to weak-T -elimination)
Barras, Jouannaud, Strub, Wang, “CoqMTU” in LICS : 2011

CICω(T ): Formal proof of Consistency,
Barras, Wang, in CSL : 2012

CICω(T ): Paper proof of DTC,
Jouannaud, Strub, in LPAR : 2017

CICω(T ): Implementation, on-going.



Strong normalization proof

Let T = {t → C(u) : C(u) simplifies t}

Lemma
T is a confluent and terminating rewriting system for ↔∗T .

Lemma
−→βιT

⊆ −→+
βιT where −→βιT

def= −→β ∪−→ι ∪−→T .

We prove that −→βιT is SN by induction over −→βι ∪�.

This proof uses syntactic arguments only, in particular the
left-linearity of the rules in {β, ι} which provide with key
commutation properties between {β, ι} and T .



Is strong elimination modulo needed in practice ? (1/2)

Assume we have a type constructor poly : Type → Type such
that poly K stands for the type of polynomials in 1 indeterminate
over K, we can construct the type mpoly K n, of multinomials
over n indeterminates over K as:

Fixpoint mpoly (K : ring) (n : nat) : Type :=
match n with 0 => K | S p => poly (mpoly K p).



Is elimination modulo needed in practice ? (2/2)

In the future version of CoqMT justified here, not only are
mpoly K (n+1+p) and mpoly K (p+n+1) identified, which is not
the case in Coq nor in the previous version of CoqMT, but
because (S (n+p)) simplifies n+1+p and p+n+1, they both
compute to poly (mpoly K (n+p)), providing some canonical
form of our initial type which highlights that poly is iterated at
least once.

This would allow, for instance, to easily use properties on
multivariate polynomials without relying on unnecessary type casts.
Such needs arise quite naturally in the proof of the symmetric
polynomials fundamental lemma, where all type casts occurring in
the proof can be removed in CoqMT.



Conclusion: when are casts needed ?

No type casts are ever needed in CoqMT provided
the decidable theory T contains the necessary
syntax to express all equalities on dependent types
whose proofs are needed to type the user’s
development.

Casts become needed when the theory T is
undecidable.
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Last slide

Thank you for your attention
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