Quantitative Partial Model-Checking Function and Its Optimisation

Stefano Bistarelli¹, Fabio Martinelli², Ilaria Matteucci², <u>Francesco Santini¹</u>

¹ Department of Maths and CS, University of Perugia, Italy
 ² Institute of Informatics and Telematics, Pisa, Italy

Outline

Introduction and motivations

C-semirings

Logic and Quantitative Partial Model-Checking

Simplification Rules and Complexity

Conclusion

Motivations

Model Checking is a well-established method to formally verify finite-state concurrent systems

 $\hfill \label{eq:specifications}$ about the system are expressed as temporal logic formulas ϕ

Efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not

A key limitation to its use is due to the state explosion problem

Partial Model Checking [Andersen '95].

 Parts of the concurrent system are gradually removed while transforming φ accordingly (such operation is also known as "quotienting"). When the intermediate specifications constructed in this manner can be kept small, the state-explosion problem is avoided

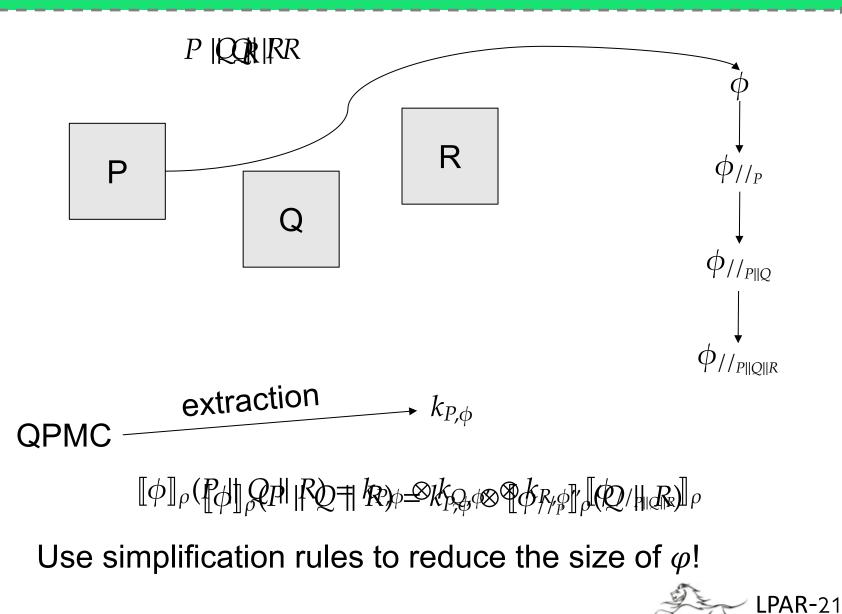
Quantitative evaluation

Sunctional aspects of a system add to the overall picture costs, execution times, and rates (for instance).

We consider a quantitative score that is more informative to understand how costly it is to satisfy a property φ :

- We take advantage of a valued logic (with fix points), where the evaluation of a formula is a value, not true/false
- Properties are checked on processes described in ``à-la-CSS''
 Generalised Process Algebra: transitions are labelled with a weight
- Values are taken from a parametric algebraic-structure: a semiring
- Different semiring instantiations represent different metrics

Approach



C-semirings

A c-semiring is a tuple $\mathbb{K} = \langle K, \otimes, \oplus, \bot, \top \rangle$

- *K* is the (possibly infinite) set of preference values
- \bigcirc \perp and \neg represent the bottom and top preference values
- ⊕ is commutative, associative, and idempotent, it is closed, ⊥ is its unit element and ⊤ is its absorbing element
- \bigcirc ⟨K, ≤_K⟩ is a complete lattice

 $a \ge_{\kappa} b$ means a is better than b

 \otimes to compose the preferences and \oplus to find the best one

 \otimes is monotonic: a \otimes b \leq_{K} a

Classical instantiations

Weighted	$\langle \mathbb{R}^+ \cup \{+\infty\}, \min, \hat{+}, \infty, 0 \rangle$	4 ≥ _K 5
Fuzzy	<[01], max, min, 0, 1>	0.5 ≥ _K 0.4
Probabilistic	〈[01], max, Ŷ, 0, 1〉	0.5 ≥ _K 0.4
Boolean	$\langle \{ false, true \}, \lor, \land, false, true \rangle$	true ≥ _K false

The Cartesian product is still a semiring

 $\langle [0..1], \mathbb{R}^+ \cup \{+\infty\} \rangle, \langle \max, \min \rangle, \langle \min, \hat{\times} \rangle, \langle 0, +\infty \rangle, \langle 1, 0 \rangle \rangle$

Weak inverse of oplus

Let \mathbb{K} be a tropical semiring. It is residuated if the set { $x \in K \mid b \otimes x \leq_K a$ } admits a maximum $\forall a, b \in K$, denoted $a \otimes b$.

$$s \otimes t$$

$$\min\{x \mid t + x \ge s\} = \begin{cases} 0 & \text{if } t \ge s \\ s - t & \text{if } s > t \end{cases}$$

$$\max\{x \mid \min(t, x) \le s\} = \begin{cases} 1 & \text{if } t \le s \\ s & \text{if } s < t \end{cases}$$

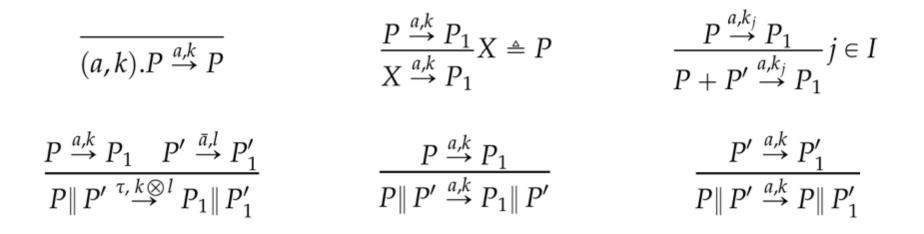
$$\$_{\text{fuzzy}}$$

MLTS (finite) and GPAs

A (finite) Multi Labelled Transition System (MLTS) is a five-tuple $MLTS = (S, Act, \mathbb{K}, T, s_0)$, where *S* is the countable (finite) state space, $s_0 \in S$ is the initial state, *Act* is a finite set of actions, \mathbb{K} is a semiring used to weigh actions, and $T : (S \times Act \times S) \longrightarrow K$ is a transition function.

The set \mathcal{P} of terms in GPA over a set of finite transition labels (a, k)where $a \in Act$ and $k \in K$ from a semiring $\langle K, \oplus, \otimes, \bot, \top \rangle$ is defined by $P ::= 0 \mid (a, k).P \mid P + P \mid P \mid P \mid X$, where X is a countable set of *process variables*, coming from a system of co-recursive equations of the form $X \triangleq P$.

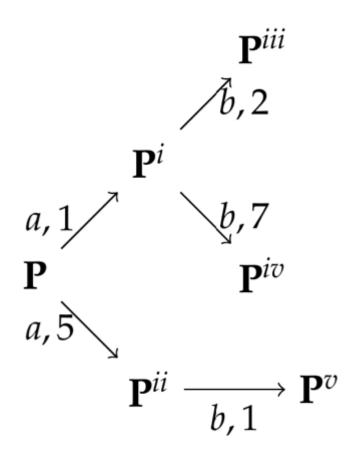
GPA à la CCS



- Generalised Process Algebra [Buchholz&Kemper01]
- Comnunications "à la CSP"
- Transitions are labelled with a semiring value

Example

P = (a, 1).((b, 2).0 + (b, 7).0) + (a.5).(b, 1).0



Logic

Given a MLTS $M = \langle S, Act, \mathbb{K}, T \rangle$, and let $k \in K$ and $a \in Act$, the syntax of a formula $\phi \in \Phi_M$ is as follows:

 $\phi \quad ::= \quad k \mid v \mid \phi_1 \oplus \phi_2 \mid \phi_1 \otimes \phi_2 \mid \phi_1 \oplus \phi_2 \mid \langle a \rangle \phi \mid [a] \phi$ $E \quad ::= \quad v =_{\mu} \phi E \mid v =_{\nu} \phi E \mid \epsilon$

Instead of classical logic operators, lub, glb, and composition

- \mathbf{Y} c-semring equational μ -calculus
- Not only true and false, every value in K is a truth value
- ****Evalued as

$$\llbracket \rrbracket_{\rho}(s) : (\Phi_M \times S) \longrightarrow K$$

Satisfiability of a formula

t-satisfiability

A process *P* satisfies a c-E μ formula ϕ with a threshold-value *t*, i.e., $P \models_t \phi$, if and only if the evaluation of ϕ on *P* is not worse than *t*, considering the order \leq_K . Formally, $P \models_t \phi \Leftrightarrow t \leq_K [\![\phi]\!]_{\rho}(P)$.

In a weighted semiring, if t=5 and $\llbracket \phi \rrbracket_{\rho}(P)$ is 3 then it is satisfied

Logic

$fix = \bigcirc \{k \mid k \leq_K \tau(k)\}, FIX = \bigoplus \{k \mid k \leq_K \tau(k)\}$

$$\begin{split} \llbracket k \rrbracket_{\rho}(s) &= k \in K \ \forall s \in S \\ \llbracket v \rrbracket_{\rho}(s) &= \rho(v, s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \oplus \llbracket \phi_2 \rrbracket_{\rho}(s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \otimes \llbracket \phi_2 \rrbracket_{\rho}(s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \oplus \llbracket \phi_2 \rrbracket_{\rho}(s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \oplus \llbracket \phi_2 \rrbracket_{\rho}(s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \oplus \llbracket \phi_2 \rrbracket_{\rho}(s) \\ \llbracket \phi_1 \oplus \phi_2 \rrbracket_{\rho}(s) &= \llbracket \phi_1 \rrbracket_{\rho}(s) \oplus \llbracket \phi_1 \rrbracket_{\rho}(s') \otimes \llbracket \phi \rrbracket_{\rho}(s')) \\ \llbracket [a] \phi \rrbracket_{\rho}(s) &= \bigoplus (T(s, a, s') \otimes \llbracket \phi \rrbracket_{\rho}(s')) \\ \llbracket v =_{\mu} \phi E \rrbracket_{\rho}(s) &= fix \ \lambda k' . \llbracket \phi E \rrbracket_{\rho}[k'/v](s) \\ \llbracket v =_{\nu} \phi E \rrbracket_{\rho}(s) &= FIX \ \lambda k' . \llbracket \phi E \rrbracket_{\rho}[k'/v](s) \\ \llbracket e \rrbracket_{\rho}(s) &= \top \end{split}$$

where $\llbracket \phi E \rrbracket_{\rho[k'/v]}(s) = \llbracket \phi \rrbracket_{\rho'}(s), \rho'(y,s) = \begin{cases} \rho(y,s) & \forall y \in free(V) \\ k' & if \ y = v \\ \llbracket E \rrbracket_{\rho[k'/v]}(s) & \forall y \notin free(V) \end{cases}$

QPMC function

(1)
$$k_{//p} = k$$

(2) $v_{//p} = v_P$
(3) $(\phi_1 \otimes \phi_2)_{//p} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//p} \otimes (k_{P,\phi_2} \oslash k_{P,\phi}) \otimes (\phi_2)_{//p}$
(4) $(\phi_1 \oplus \phi_2)_{//p} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//p} \oplus (k_{P,\phi_2} \oslash k_{P,\phi}) \otimes (\phi_2)_{//p}$
(5) $(\phi_1 \bigoplus \phi_2)_{//p} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//p} \bigoplus (k_{P,\phi_2} \oslash k_{P,\phi}) \otimes (\phi_2)_{//p}$
(6) $(\langle a \rangle \phi_1)_{//p} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes \langle a \rangle (\phi_1)_{//p} \oplus \bigoplus_{\substack{P^{a,k_a} P'}} (k_a \otimes (k_{P',\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//p'})$

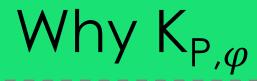
(7)
$$(\langle \tau \rangle \phi_1)_{//_P} = (k_{P,\phi_1} \otimes k_{P,\phi}) \otimes \langle \tau \rangle (\phi_1)_{//_P} \oplus \bigoplus_{\substack{p^{\tau,k_{\tau}} P' \\ p \xrightarrow{\rightarrow} P'}} (k_{\tau} \otimes (k_{P',\phi_1} \otimes k_{P,\phi}) \otimes (\phi_1)_{//_{P'}}) \\ \oplus \bigoplus_{\substack{p^{a,k_a} P' \\ p \xrightarrow{\rightarrow} P'}} ((k_a \otimes k_{P',\phi_1}) \otimes k_{P,\phi}) \otimes \langle \bar{a} \rangle (\phi_1)_{//_{P'}})$$

$$(8) \quad ([a]\phi_1)_{//_P} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes [a](\phi_1)_{//_P} \bigoplus \bigoplus_{\substack{p^{a,k_a} P'}} (k_a \otimes (k_{P',\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//_{P'}})$$

(9)
$$([\tau]\phi_1)_{//_P} = (k_{P,\phi_1} \oslash k_{P,\phi}) \otimes [\tau](\phi_1)_{//_P} \bigoplus \bigoplus_{\substack{p^{\tau,k_\tau} p' \\ \to \Phi^*}} (k_\tau \otimes (k_{P',\phi_1} \oslash k_{P,\phi}) \otimes (\phi_1)_{//_{P'}})$$

 $k_{P,\phi}$ is an amount of weight that QPMC can safely extract from each ϕ

 $k_{P,\phi}$ is a lub for the evaluation of ϕ



When the considered semiring is uniquely invertible, e.g. in case of totally ordered values

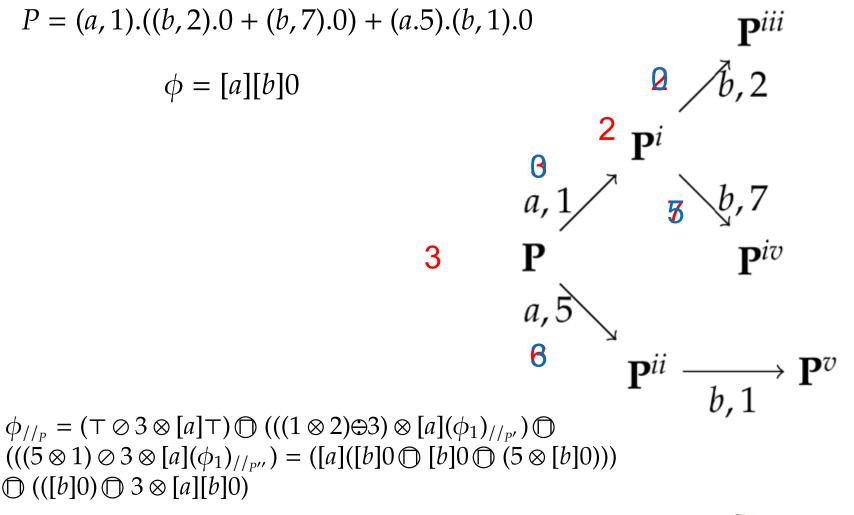
$$\llbracket \phi \rrbracket (P \parallel Q) = k_{P,\phi} \otimes \llbracket \phi_{//_P} \rrbracket (Q)$$

When $k_{P,\phi}$ is already worse than t, i.e., $k_{P,\phi} <_K t$, we can avoid evaluating $[\![\phi_{//_P}]\!]_{\rho}(Q)$

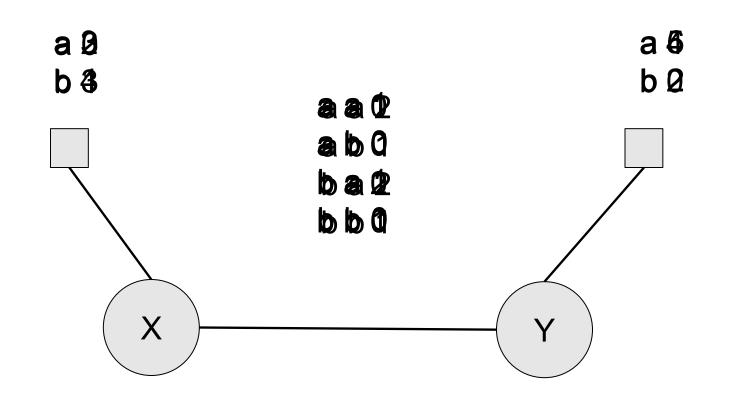
In case it is not uniquely invertible, then

 $\llbracket \phi \rrbracket_{\rho}(P \parallel Q) \geq_{K} k_{P,\phi} \otimes \llbracket \phi_{//_{P}} \rrbracket_{\rho}(Q)$

Example



(Weighted) Arc Consistency



K= 3

V= {x, y} D= {a, b}

Simple evaluation

Simple Evaluation

SE1 $\models_t v =_{\mu/\nu} \bigotimes \{h, \phi_1, \dots, \phi_n\}$ $\models_t v =_{\mu/\nu} \bigotimes \{\top, \phi_1, \ldots, \phi_n\}$ SE2 $\models_t v =_{\mu/\nu} \bigoplus \{h, \phi_1, \dots, \phi_n\}$ SE3 $\models_t v =_{\mu/\nu} \bigoplus \{\top, \phi_1, \ldots, \phi_n\}$ SE5 $\models_t v =_{\mu/\nu} \bigoplus \{\top, \phi_1, \dots, \phi_n\}$ SE6 $\models_t v =_{\mu/\nu} \bigoplus \{h, \phi_1, \dots, \phi_n\}$ SE7 $\models_t v =_{\mu/\nu} \langle a \rangle h$ SE8 $\models_t v =_{\mu/\nu} [a]h$ SE9

 $\models_t v =_{\mu/\nu} \bot if h <_K t$ \iff $\models_t v =_{\mu/\nu} \bigotimes \{\phi_1, \ldots, \phi_n\}$ \iff $\models_t v =_{\mu/\nu} \bot if h <_K t$ \iff $\models_t v =_{\mu/\nu} \bigoplus \{\phi_1, \ldots, \phi_n\}$ \iff $\models_t v =_{\mu/\nu} \top$ \iff $\models_t v =_{\mu/\nu} \bigoplus \{\phi_1, \ldots, \phi_n\} \text{ if } h <_K t$ \iff $\models_t v =_{\mu/\nu} \bot if h <_K t$ \iff $\models_t v =_{\mu/\nu} \bot if h <_K t$ \iff

From [Andersen '95], valued

Constant Propagation

Constant Propagation

$$\models_t v =_{\mu/\nu} \phi$$
CP1 \vdots

$$\models_t w =_{\mu/\nu} h$$

$$\models_t v =_{\mu/\nu} \phi$$
CP2 \vdots

$$\models_t w =_{\mu/\nu} h$$

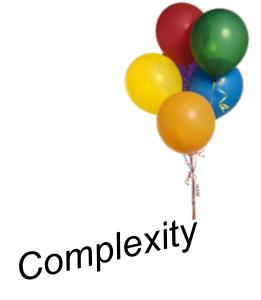
Trivial equation elimination

Trivial Equation Elimination

TEE1
$$\models_t v =_{\mu} \langle a \rangle v$$

TEE2 $\models_t v =_{\nu} [a] v$
TEE3 $\models_t \phi \bigoplus \phi$
TEE4 $\models_t \phi \oplus \phi$
TEE5 $\models_t \phi_1 \oplus (\phi_1 \otimes \phi_2)$
TEE6 $\models_t \phi_1 \oplus (\phi_1 \bigoplus \phi_2)$
TEE7 $\models_t \phi_1 \bigoplus (\phi_1 \otimes \phi_2)$
TEE8 $\models_t \phi_1 \bigoplus (\phi_1 \otimes \phi_2)$
TEE8 $\models_t \phi_1 \bigoplus (\phi_1 \bigoplus \phi_2)$

\iff	$\vDash_t v =_{\mu} \bot$
\iff	$\models_t v =_v \top$
\iff	$\vDash_t \phi$
\iff	$\vDash_t \phi$
\iff	$\vDash_t \phi_1$
\iff	$\vDash_t \phi_1$
\iff	$\vDash_k \phi_1 \otimes \phi_2$
\iff	$\vDash_t \phi_1 \bigcirc \phi_2$



Complexity

Theorem 5.1 (Bound for distributive c-semirings). *Given a distributive c-semiring* $\mathbb{K} = \langle K, \oplus, \otimes, \bot, \top \rangle$ and $M = (S, Act, \mathbb{K}, T, s_0)$, $\models_t E_{\downarrow v}$ can be computed in $O(|E| \cdot h(FD(g(\Phi))))$, where Φ collects all the formulas in $E_{\downarrow v}$ with only free variables.

 $|FD(K')| = |2^{(2^K)}|$ |FD(K')| = |K'| in case of fuzzy

$$\langle \mathbb{R}^+ \cup \{+\infty\}, \min, \hat{+}, \infty, 0 \rangle \qquad \phi = (v =_{\mu} v \otimes 2)$$

Theorem 5.2 (*t*-limited upper-bound). *Given the weighted semiring* $\langle \mathbb{N}^+ \cup \{+\infty\}, \min, +, +\infty, 0 \rangle$ and an MLTS = $(S, Act, \mathbb{K}, T, s_0)$, $\models_t E_{1v}$ can be computed in $O(|E| \cdot N^-)$, where N is the number of solutions of a Linear Diophantine Inequality $a_1x_1 + a_2x_2 + \ldots + a_rx_r \leq t$; $\{a_1, \ldots, a_n\}$ is the subset of co-prime generators of the lattice in which the computation happens.

$$\frac{t^r}{r!\prod_{i=1}^r a_i} \leqslant N \leqslant \frac{(t+a_1+a_2+\ldots+a_r)^r}{r!\prod_{i=1}^r a_i}$$

 \otimes is the glb

Conclusions and future work

A formal framework to avoid state explosion while model checking quantitative processes

Different heuristics to simplify its evaluation

- $K_{P,\varphi}$ to stop φ evaluation in case of uniquely invertible semirings
- Simplification rules to cut the size of φ before evaluating it

Complexity results for the weighted semiring, granted by t

Future work is

- Prototype in Maude of QPMC and simplifications
- Improve the simplifications and the extraction of k_{P,φ}
- Complexity results for other semirings

Thank you for your time!

Contacts:

francesco.santini@dmi.unipg.it

Last simplifications

Unguardedness Removal (*w* unguarded [1])

Equivalence Reduction

 $\models_t v =_{\mu} \phi_1$ **ER1**

ER2

$$=_t w =_\mu \phi_2$$

$$\models_t v =_v \phi_1$$

$$\models_t w =_{\nu} \phi_2$$

$$\models_t v =_{\mu/\nu} \psi[\phi/w]$$
$$\vdots$$
$$\models_t w =_{\mu/\nu} \phi$$

$$\models_t v =_{\mu} \phi_1 \oplus \phi_2$$
$$\models_t w =_{\mu} v$$
$$\models_t v =_{\nu} \phi_1 \bigoplus \phi_2$$
$$\models_t w =_{\nu} v$$

QPMC function (2)

(10)
$$(v =_{\mu} \phi_{1}E)_{//p} = \begin{cases} v_{P_{1}} =_{\mu} \phi_{1//p_{1}} \\ \vdots \\ v_{P_{n}} =_{\mu} \phi_{1//p_{n}} \\ E_{//p} \end{cases}$$

(11) $(v =_{\nu} \phi_{1}E)_{//p} = \begin{cases} v_{P_{1}} =_{\nu} \phi_{1//p_{1}} \\ \vdots \\ v_{P_{n}} =_{\nu} \phi_{1//p_{n}} \\ E_{//p} \end{cases}$

(12)
$$\epsilon_{//_P} = \epsilon$$

