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This talk in one slide

Contribution 1: Theory Instantiation Rule

derives a simplifying instance of a non-ground clause

14x 6' x2 + 49 ∨ p(x) =⇒ p(7)

by utilising ground SMT solving
(current) limitation: complete theories (e.g. arithmetic)

Contribution 2: Unification with Abstraction
extension of unification that introduces theory constraints
p(2x) against ¬p(10) =⇒ 2x 6' 10
a lazy approach to abstraction
new constrains can be often “discharged” by 1.
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Short preliminaries

Main Arsenal for Theory reasoning in Vampire

evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2

add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .

AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



4/24

Short preliminaries

Main Arsenal for Theory reasoning in Vampire
evaluate ground terms: 1 + 1 =⇒ 2
add theory axioms: x + 0 = x , x + y = y + x , . . .
AVATAR modulo theories

Theory abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x ] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

Example

5 < f (y) ∨ p(y) =⇒ x 6' f (y) ∨ 5 < x ∨ p(y)

NB: abstraction can be “undone” by the equality factoring rule



5/24

Outline

1 Short preliminaries

2 Theory instantiation

3 Abstraction through unification

4 Experiments

5 Conclusion



6/24

Theory instantiation by examples

Example

Consider the conjecture (∃x)(x + x ' 2) negated and clausified to

x + x 6' 2.

It takes Vampire 15 seconds to solve using theory axioms deriving
lemmas such as

x + 1 ' y + 1 ∨ y + 1 ≤ x ∨ x + 1 ≤ y .

Example (ARI120=1)

Initial clauses:
x ∗ x 6' 4 ∨ x ' y ∨ ¬p(y) p(2)

immediately resolve to
x ∗ x 6' 4 ∨ 2 ' x ,

but this cannot be solved with axioms only in reasonable time.
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Theory instantiation more formally

As an inference rule
C

(D[x])θ
TheoryInst

where A(P)(C ) = T [x]→ D[x] is a (partial) abstraction of C ,
and θ a subst. such thatT [x]θ is valid in the underlying theory.

Implementation:
Abstract relevant literals
Collect relevant pure theory literals L1, . . . , Ln

Run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln
If the SMT solver returns a model, transform it into a
substitution θ and produce an instance
If the SMT solver returns unsatisfiable then C is a theory
tautology and can be removed
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When (not) to abstract

Example

Consider a unit clause p(1, 5) abstracted as

(x ' 1 ∧ y ' 5)→ p(x , y).

The only “solution substitution” is θ = {x 7→ 1, y 7→ 5}.

Example
Consider a theory instantiation step

x 6' 1 + y ∨ p(x , y) =⇒ p(1, 0).

But we can obtain a “more general” instance

p(y + 1, y)

using equality resolution.
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Selecting Pure Theory Literals

Example (some literals constrain less/more than others)

(x 6' 0)→ p(x)

Three options for thi:
strong: Only select strong literals where a literal is strong if it
is a negative equality or an interpreted literal
overlap: Select all strong literals and additionally those
theory literals whose variables overlap with a strong literal
all: Select all non-trivial pure theory literals
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Interacting with the SMT solver

Recall that we collect relevant pure theory literals L1, . . . , Ln
to run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln

the negation step involves Skolemization
the we just translate the terms via Z3 API

Example (The Division by zero catch!)

The following two clauses are satisfiable:

1/x 6' 0 ∨ p(x) 1/x ' 0 ∨ ¬p(x).

However, instances p(0) and ¬p(0) could be obtained by an
“unprotected” instantiation rule.

Evaluation may fail:
result out of Vampire’s internal range
result is a proper algebraic number
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A new redundancy rule

Theory Tautology Deletion

Recall we abstract C as T [x]→ D[x]. If the SMT solver shows
that T [x] is unsatisfiable, we can remove C from the search space.

Be careful about:
the interaction with theory axiom support
handling of division by zero
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Abstraction for unification example

Example
Consider two clauses

r(14y) ¬r(x2 + 49) ∨ p(x).

We could fully abstract them to obtain:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then resolve to get

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x).

Finally, Theory Instantiation could produce

p(7).
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Why one might not like full abstraction

1 Fully abstracted clauses are much longer

2 The AVATAR modulo theories approach cannot help
(full abstraction destroys ground literals)

3 incompatible with theory axiom reasoning
(theory part requires special treatment)

4 inferences need to be protected from undoing abstraction
(recall equality resolution)
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Unification with constraints

Instead of full abstraction . . .
incorporate the abstraction process into unification
thus abstractions are “on demand” and lazy

We define a function mguAbs(t, s) = (θ, Γ) such that

(Γ→ t ' s)θ is valid

and θ is the most general such substitution given Γ.

Example (strive for generality)

Unifying a + b with c + d should produce ({}, a + b = c + d) and
not ({}, a = c ∧ b = d).
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Unification with constraints Algorithm part I

function mguAbs(s, t)
if t is a variable and not occurs(t, s) then

return ({t 7→ s}, true)

if s is a variable and not occurs(s, t) then
return ({s 7→ t}, true)

if s and t have different top-level symbols then
if canAbstract(s, t) then

return ({}, s = t)

return (⊥,⊥)

if s and t are constants then
return ({}, true)

. . .
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Unification with constraints Algorithm part II

. . .
let s = f (s1, . . . , sn) and t = f (t1, . . . , tn) in
θ = {} and Γ = true
for i = 1 to n do

(θi , Γi ) = mguAbs((siθ), (tiθ))
if (θi , Γi ) = (⊥,⊥) or canAbstract(s, t) and Γi 6= true

then
if canAbstract(s, t) then

return ({}, s = t)

return (⊥,⊥)

θ = θ ◦ θi and Γ = Γ ∧ Γi

return (θ, Γ)
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When do we abstract?

Example (do not produce unsatisfiable constraints)

Allowing p(1) and p(2) to unify under the constraint that 1 ' 2 is
not useful in any context.

canAbstract will always be false if the two terms are always
non-equal in the underlying theory.

On top of that

For option to choose from:
interpreted_only: only produce a constraint if the top-level
symbol of both terms is a theory-symbol,
one_side_interpreted: only produce a constraint if the
top-level symbol of at least one term is a theory symbol,
one_side_constant: as one_side_interpreted but if the
other side is uninterpreted it must be a constant,
all: allow all terms of theory sort to unify and produce
constraints.
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Updated calculus

New inference rule: Resolution-wA

A ∨ C1 ¬A′ ∨ C2

(Γ→ (C1 ∨ C2))θ
,

where (θ, Γ) = mguAbs(A,A
′) and A is not an equality literal.

Example (eager evaluation is not a problem anymore)

When starting from an obvious conflict:
p(1 + 3) ¬p(x + 3)

eager evaluation destroys this by simplifying
p(1 + 3) =⇒ p(4).

But Resolution-wA allows us to still derive
4 6' x + 3

and Theory Instantiation could derive the empty clause.
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Experiments

The setup:
implemented in Vampire
Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
all SMTLIB with quantifiers and theories (-BV)

How to assess the value of a new technique?

it can interact in many ways (with around 60 other options)
our methodology:

discard easy and unsolvable problems
generate random strategy and vary the interesting part

For this experiment:
24 reasonable combinations of option values: fta, uwa, thi
approx. 100 000 runs in total
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Comparison of Three Options

fta uwa thi solutions
on off all 252
on off overlap 265
on off strong 266
on off off 276
off all all 333
off all overlap 351
off all strong 354
off one_side_interpreted all 364
off all off 364
off one_side_constant all 374
off interpreted_only all 379
off one_side_interpreted overlap 385
off one_side_interpreted strong 387
off off all 392
off one_side_constant strong 397
off one_side_constant overlap 401
off interpreted_only overlap 407
off one_side_interpreted off 407
off interpreted_only strong 409
off one_side_constant off 417
off off overlap 428
off interpreted_only off 430
off off strong 431
off off off 450
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Contribution of New Options to Strategy Building

A new technique in the context of a portfolio approach:
1 helps to solve problems faster
2 solves previously unsolved problems

The latter dominates in FO reasoning since . . .
If a problem is solvable by a prover, it is usually solvable with a
short running time.

Problems newly solved thanks to thi and uwa:
ALIA (arrays and linear integer arithmetic): 2
AUFNIRA: 3
LIA : 10
LRA : 1
UFLIA : 1
UFNIA : 1
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Conclusion

Two new techniques for reasoning with theories and quantifiers

technique 1 (thi): simplifying instances via SMT
technique 2 (uwa): lazy abstraction during unification
implemented in Vampire
promising first results

Directions for future work
combine (thi) with the information in AVATAR modulo theory
“general solutions” in terms of “parameters”

Thank you for your attention!
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