Recent Improvements of Theory Reasoning in Vampire

Giles Reger¹, Martin Suda², Andrei Voronkov^{3,4}

¹University of Manchester, Manchester, UK ²TU Wien, Vienna, Austria ³Chalmers University of Technology, Gothenburg, Sweden ⁴EasyChair

IWIL 2017 - Maun, May 7, 2017

Contribution 1: Theory Instantiation Rule

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

Contribution 1: Theory Instantiation Rule

derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x)$$

Contribution 1: Theory Instantiation Rule

derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

• by utilising ground SMT solving

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

Contribution 2: Unification with Abstraction

extension of unification that introduces theory constraints

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

- extension of unification that introduces theory constraints
- p(2x) against $\neg p(10)$

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

- extension of unification that introduces theory constraints
- p(2x) against $\neg p(10) \implies 2x \not\simeq 10$

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a non-ground clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

- extension of unification that introduces theory constraints
- p(2x) against $\neg p(10) \implies 2x \not\simeq 10$
- a lazy approach to abstraction

Contribution 1: Theory Instantiation Rule

• derives a simplifying instance of a <u>non-ground</u> clause

$$14x \not\simeq x^2 + 49 \lor p(x) \implies p(7)$$

- by utilising ground SMT solving
- (current) limitation: complete theories (e.g. arithmetic)

- extension of unification that introduces theory constraints
- p(2x) against $\neg p(10) \implies 2x \not\simeq 10$
- a lazy approach to abstraction
- new constrains can be often "discharged" by 1.

Outline

- Short preliminaries
- 2 Theory instantiation
- 3 Abstraction through unification
- 4 Experiments
- Conclusion

Main Arsenal for Theory reasoning in Vampire

Main Arsenal for Theory reasoning in Vampire

ullet evaluate ground terms: $1+1\Longrightarrow 2$

Main Arsenal for Theory reasoning in Vampire

- ullet evaluate ground terms: $1+1\Longrightarrow 2$
- add theory axioms: x + 0 = x, x + y = y + x, ...

Main Arsenal for Theory reasoning in Vampire

- evaluate ground terms: $1+1 \Longrightarrow 2$
- add theory axioms: x + 0 = x, x + y = y + x, ...
- AVATAR modulo theories

Main Arsenal for Theory reasoning in Vampire

- evaluate ground terms: $1+1 \Longrightarrow 2$
- add theory axioms: x + 0 = x, x + y = y + x, ...
- AVATAR modulo theories

Theory abstraction rule

$$L[t] \lor C \implies x \not\simeq t \lor L[x] \lor C$$

where L is a theory literal, t a non-theory term, and x fresh.

Main Arsenal for Theory reasoning in Vampire

- evaluate ground terms: $1+1 \Longrightarrow 2$
- add theory axioms: x + 0 = x, x + y = y + x, ...
- AVATAR modulo theories

Theory abstraction rule

$$L[t] \lor C \implies x \not\simeq t \lor L[x] \lor C,$$

where L is a theory literal, t a non-theory term, and x fresh.

Example

$$5 < f(y) \lor p(y) \implies x \not\simeq f(y) \lor 5 < x \lor p(y)$$

Main Arsenal for Theory reasoning in Vampire

- evaluate ground terms: $1+1 \Longrightarrow 2$
- add theory axioms: x + 0 = x, x + y = y + x, ...
- AVATAR modulo theories

Theory abstraction rule

$$L[t] \lor C \implies x \not\simeq t \lor L[x] \lor C,$$

where L is a theory literal, t a non-theory term, and x fresh.

Example

$$5 < f(y) \lor p(y) \implies x \not\simeq f(y) \lor 5 < x \lor p(y)$$

NB: abstraction can be "undone" by the equality factoring rule

Outline

- Short preliminaries
- 2 Theory instantiation
- 3 Abstraction through unification
- 4 Experiments
- Conclusion

Theory instantiation by examples

Example

Consider the conjecture $(\exists x)(x+x\simeq 2)$ negated and clausified to

$$x + x \not\simeq 2$$
.

It takes Vampire 15 seconds to solve using theory axioms deriving lemmas such as

$$x+1 \simeq y+1 \lor y+1 \le x \lor x+1 \le y.$$

Theory instantiation by examples

Example

Consider the conjecture $(\exists x)(x+x\simeq 2)$ negated and clausified to

$$x + x \not\simeq 2$$
.

It takes Vampire 15 seconds to solve using theory axioms deriving lemmas such as

$$x+1 \simeq y+1 \lor y+1 \le x \lor x+1 \le y.$$

Example (ARI120=1)

Initial clauses:

$$x * x \not\simeq 4 \lor x \simeq y \lor \neg p(y)$$
 $p(2)$

Theory instantiation by examples

Example

Consider the conjecture $(\exists x)(x+x\simeq 2)$ negated and clausified to

$$x + x \not\simeq 2$$
.

It takes Vampire 15 seconds to solve using theory axioms deriving lemmas such as

$$x+1 \simeq y+1 \lor y+1 \le x \lor x+1 \le y.$$

Example (ARI120=1)

Initial clauses:

$$x * x \not\simeq 4 \lor x \simeq y \lor \neg p(y)$$
 $p(2)$

immediately resolve to

$$x * x \not\simeq 4 \lor 2 \simeq x$$

but this cannot be solved with axioms only in reasonable time.

Theory instantiation more formally

As an inference rule

$$\frac{C}{(D[x])\theta}$$
 Theorylist

where $A_{(P)}(C) = T[x] \to D[x]$ is a (partial) abstraction of C, and θ a subst. such that $T[x]\theta$ is valid in the underlying theory.

Theory instantiation more formally

As an inference rule

$$\frac{C}{(D[x])\theta}$$
 Theorylnst

where $A_{(P)}(C) = T[x] \to D[x]$ is a (partial) abstraction of C, and θ a subst. such that $T[x]\theta$ is valid in the underlying theory.

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals L_1, \ldots, L_n
- Run an SMT solver on $T[x] = \neg L_1 \wedge ... \wedge \neg L_n$
- If the SMT solver returns a model, transform it into a substitution θ and produce an instance
- If the SMT solver returns <u>unsatisfiable</u> then *C* is a theory tautology and can be removed

Theory instantiation more formally

As an inference rule

$$\frac{C}{(D[x])\theta}$$
 Theorylnst

where $A_{(P)}(C) = T[x] \to D[x]$ is a (partial) abstraction of C, and θ a subst. such that $T[x]\theta$ is valid in the underlying theory.

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals L_1, \ldots, L_n
- Run an SMT solver on $T[x] = \neg L_1 \wedge ... \wedge \neg L_n$
- If the SMT solver returns a model, transform it into a substitution θ and produce an instance
- If the SMT solver returns <u>unsatisfiable</u> then *C* is a theory tautology and can be removed

When (not) to abstract

Example

Consider a unit clause p(1,5) abstracted as

$$(x \simeq 1 \land y \simeq 5) \rightarrow p(x, y).$$

The only "solution substitution" is $\theta = \{x \mapsto 1, y \mapsto 5\}$.

When (not) to abstract

Example

Consider a unit clause p(1,5) abstracted as

$$(x \simeq 1 \land y \simeq 5) \rightarrow p(x, y).$$

The only "solution substitution" is $\theta = \{x \mapsto 1, y \mapsto 5\}$.

Example

Consider a theory instantiation step

$$x \not\simeq 1 + y \vee p(x,y) \implies p(1,0).$$

When (not) to abstract

Example

Consider a unit clause p(1,5) abstracted as

$$(x \simeq 1 \land y \simeq 5) \rightarrow p(x, y).$$

The only "solution substitution" is $\theta = \{x \mapsto 1, y \mapsto 5\}$.

Example

Consider a theory instantiation step

$$x \not\simeq 1 + y \lor p(x, y) \implies p(1, 0).$$

But we can obtain a "more general" instance

$$p(y + 1, y)$$

using equality resolution.

Selecting Pure Theory Literals

Example (some literals constrain less/more than others)

$$(x \not\simeq 0) \to p(x)$$

Selecting Pure Theory Literals

Example (some literals constrain less/more than others)

$$(x \not\simeq 0) \rightarrow p(x)$$

Three options for thi:

- strong: Only select strong literals where a literal is strong if it is a negative equality or an interpreted literal
- overlap: Select all strong literals and additionally those theory literals whose variables overlap with a strong literal
- all: Select all non-trivial pure theory literals

Recall that we collect relevant pure theory literals L_1, \ldots, L_n to run an SMT solver on $T[\mathbf{x}] = \neg L_1 \wedge \ldots \wedge \neg L_n$

- the negation step involves Skolemization
- the we just translate the terms via Z3 API

Recall that we collect relevant pure theory literals L_1, \ldots, L_n to run an SMT solver on $T[\mathbf{x}] = \neg L_1 \wedge \ldots \wedge \neg L_n$

- the negation step involves Skolemization
- the we just translate the terms via Z3 API

Example (The Division by zero catch!)

The following two clauses are satisfiable:

$$1/x \not\simeq 0 \lor p(x)$$
 $1/x \simeq 0 \lor \neg p(x)$.

Recall that we collect relevant pure theory literals L_1, \ldots, L_n to run an SMT solver on $T[\mathbf{x}] = \neg L_1 \wedge \ldots \wedge \neg L_n$

- the negation step involves Skolemization
- the we just translate the terms via Z3 API

Example (The Division by zero catch!)

The following two clauses are satisfiable:

$$1/x \not\simeq 0 \lor p(x)$$
 $1/x \simeq 0 \lor \neg p(x)$.

However, instances p(0) and $\neg p(0)$ could be obtained by an "unprotected" instantiation rule.

Recall that we collect relevant pure theory literals L_1, \ldots, L_n to run an SMT solver on $T[\mathbf{x}] = \neg L_1 \wedge \ldots \wedge \neg L_n$

- the negation step involves Skolemization
- the we just translate the terms via Z3 API

Example (The Division by zero catch!)

The following two clauses are satisfiable:

$$1/x \not\simeq 0 \lor p(x)$$
 $1/x \simeq 0 \lor \neg p(x)$.

However, instances p(0) and $\neg p(0)$ could be obtained by an "unprotected" instantiation rule.

Evaluation may fail:

- result out of Vampire's internal range
- result is a proper algebraic number

Theory Tautology Deletion

Recall we abstract C as $T[x] \to D[x]$. If the SMT solver shows that T[x] is unsatisfiable, we can remove C from the search space.

Theory Tautology Deletion

Recall we abstract C as $T[x] \to D[x]$. If the SMT solver shows that T[x] is unsatisfiable, we can remove C from the search space.

Be careful about:

Theory Tautology Deletion

Recall we abstract C as $T[x] \to D[x]$. If the SMT solver shows that T[x] is unsatisfiable, we can remove C from the search space.

Be careful about:

• the interaction with theory axiom support

Theory Tautology Deletion

Recall we abstract C as $T[x] \to D[x]$. If the SMT solver shows that T[x] is unsatisfiable, we can remove C from the search space.

Be careful about:

- the interaction with theory axiom support
- handling of division by zero

Outline

- Short preliminaries
- 2 Theory instantiation
- 3 Abstraction through unification
- 4 Experiments
- Conclusion

Example

Consider two clauses

$$r(14y) \qquad \neg r(x^2 + 49) \lor p(x).$$

Example

Consider two clauses

$$r(14y) \qquad \neg r(x^2 + 49) \lor p(x).$$

We could fully abstract them to obtain:

$$r(u) \lor u \not\simeq 14y$$
 $\neg r(v) \lor v \not\simeq x^2 + 49 \lor p(x),$

Example

Consider two clauses

$$r(14y) \qquad \neg r(x^2 + 49) \lor p(x).$$

We could fully abstract them to obtain:

$$r(u) \lor u \not\simeq 14y$$
 $\neg r(v) \lor v \not\simeq x^2 + 49 \lor p(x),$

then resolve to get

$$u \not\simeq 14y \lor u \not\simeq x^2 + 49 \lor p(x).$$

Example

Consider two clauses

$$r(14y) \neg r(x^2 + 49) \lor p(x).$$

We could fully abstract them to obtain:

$$r(u) \lor u \not\simeq 14y$$
 $\neg r(v) \lor v \not\simeq x^2 + 49 \lor p(x),$

then resolve to get

$$u \not\simeq 14y \lor u \not\simeq x^2 + 49 \lor p(x).$$

Finally, Theory Instantiation could produce

$$p(7)$$
.

Fully abstracted clauses are much longer

- Fully abstracted clauses are much longer
- The AVATAR modulo theories approach cannot help (full abstraction destroys ground literals)

- Fully abstracted clauses are much longer
- The AVATAR modulo theories approach cannot help (full abstraction destroys ground literals)
- incompatible with theory axiom reasoning (theory part requires special treatment)

- Fully abstracted clauses are much longer
- The AVATAR modulo theories approach cannot help (full abstraction destroys ground literals)
- incompatible with theory axiom reasoning (theory part requires special treatment)
- inferences need to be protected from undoing abstraction (recall equality resolution)

Unification with constraints

Instead of full abstraction ...

- incorporate the abstraction process into unification
- thus abstractions are "on demand" and <u>lazy</u>

Unification with constraints

Instead of full abstraction . . .

- incorporate the abstraction process into unification
- thus abstractions are "on demand" and lazy

We define a function $mgu_{Abs}(t,s) = (\theta,\Gamma)$ such that

$$(\Gamma \to t \simeq s)\theta$$
 is valid

and θ is the most general such substitution given Γ .

Unification with constraints

Instead of full abstraction . . .

- incorporate the abstraction process into unification
- thus abstractions are "on demand" and lazy

We define a function $mgu_{Abs}(t,s) = (\theta,\Gamma)$ such that

$$(\Gamma \rightarrow t \simeq s)\theta$$
 is valid

and θ is the most general such substitution given Γ .

Example (strive for generality)

Unifying a+b with c+d should produce $(\{\}, a+b=c+d)$ and not $(\{\}, a=c \land b=d)$.

Unification with constraints Algorithm part I

```
function mgu_{Abs}(s, t)
   if t is a variable and not occurs(t, s) then
       return (\{t \mapsto s\}, true)
   if s is a variable and not occurs(s, t) then
       return (\{s \mapsto t\}, true)
   if s and t have different top-level symbols then
       if canAbstract(s, t) then
           return (\{\}, s = t)
       return (\bot, \bot)
   if s and t are constants then
       return ({}, true)
```

Unification with constraints Algorithm part II

```
let s = f(s_1, \ldots, s_n) and t = f(t_1, \ldots, t_n) in
\theta = \{\} and \Gamma = true
for i = 1 to n do
     (\theta_i, \Gamma_i) = \text{mgu}_{Abs}((s_i\theta), (t_i\theta))
     if (\theta_i, \Gamma_i) = (\bot, \bot) or canAbstract(s, t) and \Gamma_i \neq true
then
          if canAbstract(s, t) then
                return (\{\}, s = t)
          return (\bot, \bot)
     \theta = \theta \circ \theta_i and \Gamma = \Gamma \wedge \Gamma_i
return (\theta, \Gamma)
```

When do we abstract?

Example (do not produce unsatisfiable constraints)

Allowing p(1) and p(2) to unify under the constraint that $1\simeq 2$ is not useful in any context.

canAbstract will always be false if the two terms are always non-equal in the underlying theory.

When do we abstract?

Example (do not produce unsatisfiable constraints)

Allowing p(1) and p(2) to unify under the constraint that $1 \simeq 2$ is not useful in any context.

canAbstract will always be false if the two terms are always non-equal in the underlying theory. On top of that

For option to choose from:

- interpreted_only: only produce a constraint if the top-level symbol of both terms is a theory-symbol,
- one_side_interpreted: only produce a constraint if the top-level symbol of at least one term is a theory symbol,
- one_side_constant: as one_side_interpreted but if the other side is uninterpreted it must be a constant,
- all: allow all terms of theory sort to unify and produce constraints.

New inference rule: Resolution-wA

$$\frac{\underline{A}\vee C_1 \quad \underline{\neg A'}\vee C_2}{(\Gamma\to (C_1\vee C_2))\theta} \ ,$$

where $(\theta, \Gamma) = mgu_{Abs}(A, A')$ and A is not an equality literal.

New inference rule: Resolution-wA

$$\frac{\underline{A}\vee C_1 \quad \underline{\neg A'}\vee C_2}{(\Gamma\to (C_1\vee C_2))\theta} \ ,$$

where $(\theta, \Gamma) = mgu_{Abs}(A, A')$ and A is not an equality literal.

Example (eager evaluation is not a problem anymore)

When starting from an obvious conflict:

$$p(1+3)$$
 $\neg p(x+3)$

New inference rule: Resolution-wA

$$\frac{\underline{A}\vee C_1 \quad \underline{\neg A'}\vee C_2}{(\Gamma\to (C_1\vee C_2))\theta} \ ,$$

where $(\theta, \Gamma) = mgu_{Abs}(A, A')$ and A is not an equality literal.

Example (eager evaluation is not a problem anymore)

When starting from an obvious conflict:

$$p(1+3) \neg p(x+3)$$

eager evaluation destroys this by simplifying

$$p(1+3) \implies p(4)$$
.

New inference rule: Resolution-wA

$$\frac{\underline{A}\vee C_1 \quad \underline{\neg A'}\vee C_2}{(\Gamma\to (C_1\vee C_2))\theta} \ ,$$

where $(\theta, \Gamma) = \text{mgu}_{Abs}(A, A')$ and A is not an equality literal.

Example (eager evaluation is not a problem anymore)

When starting from an obvious conflict:

$$p(1+3) \neg p(x+3)$$

eager evaluation destroys this by simplifying

$$p(1+3) \implies p(4)$$
.

But Resolution-wA allows us to still derive

$$4 \not\simeq x + 3$$

and Theory Instantiation could derive the empty clause.

Outline

- Short preliminaries
- 2 Theory instantiation
- 3 Abstraction through unification
- 4 Experiments
- Conclusion

Experiments

The setup:

- implemented in Vampire
- Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
- all SMTLIB with quantifiers and theories (-BV)

Experiments

The setup:

- implemented in Vampire
- Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
- all SMTLIB with quantifiers and theories (-BV)

How to assess the value of a new technique?

Experiments

The setup:

- implemented in Vampire
- Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
- all SMTLIB with quantifiers and theories (-BV)

How to assess the value of a new technique?

• it can interact in many ways (with around 60 other options)

Experiments

The setup:

- implemented in Vampire
- Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
- all SMTLIB with quantifiers and theories (-BV)

How to assess the value of a new technique?

- it can interact in many ways (with around 60 other options)
- our methodology:
 - discard easy and unsolvable problems
 - generate random strategy and vary the interesting part

Experiments

The setup:

- implemented in Vampire
- Manchester cluster: 2x4core @ 2.4 GHz and 24GiB per node
- all SMTLIB with quantifiers and theories (-BV)

How to assess the value of a new technique?

- it can interact in many ways (with around 60 other options)
- our methodology:
 - discard easy and unsolvable problems
 - generate random strategy and vary the interesting part

For this experiment:

- 24 reasonable combinations of option values: fta, uwa, thi
- approx. 100 000 runs in total

Comparison of Three Options

fta	uwa	thi	solutions
on	off	all	252
on	off	overlap	265
on	off	strong	266
on	off	off	276
off	all	all	333
off	all	overlap	351
off	all	strong	354
off	one side interpreted	all	364
off	all	off	364
off	one side constant	all	374
off	interpreted only	all	379
off	one side interpreted	overlap	385
off	one side interpreted	strong	387
off	off	all	392
off	one side constant	strong	397
off	one side constant	overlap	401
off	interpreted only	overlap	407
off	one side interpreted	off	407
off	interpreted only	strong	409
off	one side constant	off	417
off	- off	overlap	428
off	interpreted only	off	430
off	off —	strong	431
off	off	off	450

Contribution of New Options to Strategy Building

A new technique in the context of a portfolio approach:

- helps to solve problems faster
- solves previously unsolved problems

Contribution of New Options to Strategy Building

A new technique in the context of a portfolio approach:

- helps to solve problems faster
- solves previously unsolved problems

The latter dominates in FO reasoning since . . .

If a problem is solvable by a prover, it is usually solvable with a short running time.

Contribution of New Options to Strategy Building

A new technique in the context of a portfolio approach:

- helps to solve problems faster
- solves previously unsolved problems

The latter dominates in FO reasoning since . . .

If a problem is solvable by a prover, it is usually solvable with a short running time.

Problems newly solved thanks to thi and uwa:

- ALIA (arrays and linear integer arithmetic): 2
- AUFNIRA: 3
- LIA: 10
- LRA: 1
- UFLIA: 1
- UFNIA : 1

Two new techniques for reasoning with theories and quantifiers

Two new techniques for reasoning with theories and quantifiers

• technique 1 (thi): simplifying instances via SMT

Two new techniques for reasoning with theories and quantifiers

- technique 1 (thi): simplifying instances via SMT
- technique 2 (uwa): lazy abstraction during unification

Two new techniques for reasoning with theories and quantifiers

- technique 1 (thi): simplifying instances via SMT
- technique 2 (uwa): lazy abstraction during unification
- implemented in Vampire
- promising first results

Two new techniques for reasoning with theories and quantifiers

- technique 1 (thi): simplifying instances via SMT
- technique 2 (uwa): lazy abstraction during unification
- implemented in Vampire
- promising first results

Directions for future work

• combine (thi) with the information in AVATAR modulo theory

Two new techniques for reasoning with theories and quantifiers

- technique 1 (thi): simplifying instances via SMT
- technique 2 (uwa): lazy abstraction during unification
- implemented in Vampire
- promising first results

Directions for future work

- combine (thi) with the information in AVATAR modulo theory
- "general solutions" in terms of "parameters"

Two new techniques for reasoning with theories and quantifiers

- technique 1 (thi): simplifying instances via SMT
- technique 2 (uwa): lazy abstraction during unification
- implemented in Vampire
- promising first results

Directions for future work

- combine (thi) with the information in AVATAR modulo theory
- "general solutions" in terms of "parameters"

Thank you for your attention!