Set of Support for Theory Reasoning

Giles Reger¹, Martin Suda²

¹School of Computer Science, University of Manchester, UK

²TU Wien, Vienna, Austria

IWIL 2017 - Maun, May 7, 2017

Theory axioms in proofs

Consider the following toy theory problem

$$f(1+a) < a, \quad \forall x.(x < f(x+1))$$

Theory axioms in proofs

Consider the following toy theory problem

$$f(1+a) < a, \quad \forall x.(x < f(x+1))$$

can be refuted by Vampire via the following derivation:

Theory axioms in proofs

Consider the following toy theory problem

$$f(1+a) < a, \quad \forall x.(x < f(x+1))$$

can be refuted by Vampire via the following derivation:

However, in the meantime, the theory axioms may also yield:

$$\neg(x < y) \lor \neg(y < x)$$

or (perhaps less usefully):

$$\neg(x_0 < x_1) \lor \neg(x_2 < x_0) \lor \neg(x_1 < x_3) \lor \neg(x_4 < x_5) \lor \neg(x_3 < x_4) \lor \neg(x_5 < x_2)$$

Inferences between axioms

Example problem ARI176=1 from TPTP

$$3x + 5y \neq 22$$

can be shown unsatisfiable using axioms

$$x+y = y+x$$
, $x+(y+z) = (x+y)+z$, $x*1 = x$, $x*(y+z) = (x*y)+(x*z)$

Inferences between axioms

Example problem ARI176=1 from TPTP

$$3x + 5y \neq 22$$

can be shown unsatisfiable using axioms

$$x+y = y+x$$
, $x+(y+z) = (x+y)+z$, $x*1 = x$, $x*(y+z) = (x*y)+(x*z)$

The derivation starts by:

Inferences between axioms

Example problem ARI176=1 from TPTP

$$3x + 5y \neq 22$$

can be shown unsatisfiable using axioms

$$x+y = y+x$$
, $x+(y+z) = (x+y)+z$, $x*1 = x$, $x*(y+z) = (x*y)+(x*z)$

The derivation starts by:

$$\begin{array}{c}
 x * 1 = x & x * (y + z) = (x * y) + (x * z) \\
 \hline
 x * (1 + y) = x + (x * y) & x + (y + z) = (x + y) + z \\
 \hline
 (x * (1 + y)) + z = x + ((x * y) + z)
 \end{array}$$

The problem cannot be solved in Vampire in reasonable time without first combining axioms among themselves

• One useful technique for reasoning with theories and quantifiers is the addition of theory axioms

- One useful technique for reasoning with theories and quantifiers is the addition of theory axioms
- Quite successful in many cases.
 However, many axioms can be "explosive".

- One useful technique for reasoning with theories and quantifiers is the addition of theory axioms
- Quite successful in many cases.
 However, many axioms can be "explosive".
- Set of support is a well known idea to prevent explosion

- One useful technique for reasoning with theories and quantifiers is the addition of theory axioms
- Quite successful in many cases.
 However, many axioms can be "explosive".
- Set of support is a well known idea to prevent explosion
- Idea 1: apply SOS for theory reasoning

- One useful technique for reasoning with theories and quantifiers is the addition of theory axioms
- Quite successful in many cases.
 However, many axioms can be "explosive".
- Set of support is a well known idea to prevent explosion
- Idea 1: apply SOS for theory reasoning
- Idea 2: fine-tune this by allowing <u>limited reasoning</u> among theory axioms

- One useful technique for reasoning with theories and quantifiers is the addition of theory axioms
- Quite successful in many cases.
 However, many axioms can be "explosive".
- Set of support is a well known idea to prevent explosion
- Idea 1: apply SOS for theory reasoning
- Idea 2: fine-tune this by allowing <u>limited reasoning</u> among theory axioms
- Preliminary evaluation of the technique

Outline

- Saturation and Theory Reasoning in Vampire
- 2 The Set of Support Strategy
- 3 Set of Support for Theory Reasoning
- 4 Conclusion

Saturation-based Theorem Proving

Compute deductive closure of the input N wrt inferences \mathcal{I} :

Saturation-based Theorem Proving

Compute deductive closure of the input N wrt inferences \mathcal{I} :

- clause selection schemes
- further aspects: literal selection, ordering restrictions, . . .
- completeness considerations

Main focus

Reasoning with quantifiers and theories

Main focus

Reasoning with quantifiers and theories

Current arsenal:

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1\Longrightarrow 2$$
, $1<1\Longrightarrow \textit{false}$, . . .

Main focus

Reasoning with quantifiers and theories

Current arsenal:

• Evaluation of ground interpreted terms:

$$1+1 \Longrightarrow 2, 1 < 1 \Longrightarrow$$
 false, ...

• Interpreted operations treated specially by ordering

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1 \Longrightarrow 2, 1 < 1 \Longrightarrow$$
 false, ...

- Interpreted operations treated specially by ordering
- Normalization of interpreted operations, i.e. only use <

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1 \Longrightarrow 2, 1 < 1 \Longrightarrow false, \dots$$

- Interpreted operations treated specially by ordering
- Normalization of interpreted operations, i.e. only use <
- Theory axioms
 - hand-crafted set
 - either all added or none added (based on an option)

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1 \Longrightarrow 2, 1 < 1 \Longrightarrow false, \dots$$

- Interpreted operations treated specially by ordering
- Normalization of interpreted operations, i.e. only use <
- Theory axioms
 - hand-crafted set
 - either all added or none added (based on an option)
- AVATAR with an SMT solver
 - Idea: Vampire only explores theory-consistent ground sub-problems

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1 \Longrightarrow 2$$
, $1 < 1 \Longrightarrow false$, ...

- Interpreted operations treated specially by ordering
- ullet Normalization of interpreted operations, i.e. only use <
- Theory axioms
 - hand-crafted set
 - either all added or none added (based on an option)
- AVATAR with an SMT solver
 - Idea: Vampire only explores theory-consistent ground sub-problems
- Theory Instantiation and Unification with Abstraction

Main focus

Reasoning with quantifiers and theories

Current arsenal:

$$1+1 \Longrightarrow 2$$
, $1 < 1 \Longrightarrow false$, ...

- Interpreted operations treated specially by ordering
- Normalization of interpreted operations, i.e. only use <
- Theory axioms
 - hand-crafted set
 - either all added or none added (based on an option)
- AVATAR with an SMT solver
 - Idea: Vampire only explores theory-consistent ground sub-problems
- Theory Instantiation and Unification with Abstraction

Some axioms

Axioms can be "explosive"

ARI581=1.p

```
tff(mix_quant_ineq_sys_solvable_2,conjecture,(
  ! [X: $int] : ( $less(5,X) =>
     ? [Y: $int] : ( $less(Y,3) & $less(7,$sum(X,Y))))).
```

- default strategy with all axioms: not solved in 60 s
- remove commutativity of +: solved instantly

Axioms can be "explosive"

ARI581=1.p

```
tff(mix_quant_ineq_sys_solvable_2,conjecture,(
  ! [X: $int] : ( $less(5,X) =>
   ? [Y: \$int] : (\$less(Y,3) \& \$less(7,\$sum(X,Y))))).
```

- default strategy with all axioms: not solved in 60 s
- remove commutativity of +: solved instantly

SYN000=2.p

- "test tptp theory syntax" benchmark
- Vampire in default: 223 clauses (90 theory consequences, 1 used in the proof)
- negate the conjecture, run for 10 s: 456 973 clauses (98 % are consequences of theory axioms)

Outline

- Saturation and Theory Reasoning in Vampire
- 2 The Set of Support Strategy
- 3 Set of Support for Theory Reasoning
- 4 Conclusion

The Set of Support Strategy

Basic idea:

- split the input clauses into a set of support and the rest
- restrict inferences to involve at least one premise from SOS
- new clauses are added to SOS

"Every inference must have an ancestor in the initial SOS."

The Set of Support Strategy

Basic idea:

- split the input clauses into a set of support and the rest
- restrict inferences to involve at least one premise from SOS
- new clauses are added to SOS

"Every inference must have an ancestor in the initial SOS."

In practice:

just put non-SOS clauses directly to active

The Set of Support Strategy

Basic idea:

- split the input clauses into a set of support and the rest
- restrict inferences to involve at least one premise from SOS
- new clauses are added to SOS

"Every inference must have an ancestor in the initial SOS."

In practice:

- just put non-SOS clauses directly to active
- define SOS = clauses from the conjecture
 - Note: benchmarks without explicit conjecture SOS-suck

SOS in Vampire

Vampire's -sos option values:

off: do not use SOS

on: standard SOS

all: SOS + select all literals of clauses in "initially active"

SOS in Vampire

Vampire's -sos option values:

off: do not use SOS

on: standard SOS

all: SOS + select all literals of clauses in "initially active"

Experiment (relevant TPTP v6.4.0, 300 s) competition mode competition mode with sos=off Solved 11 948 11 613 Uniques 422 87

Outline

- Saturation and Theory Reasoning in Vampire
- 2 The Set of Support Strategy
- 3 Set of Support for Theory Reasoning
- 4 Conclusion

SOS for Theories

SOS and theory axioms

- the whole input problem is the SOS
- added theory axioms go directly to active
- new, fourth -sos option value: theory

SOS for Theories

SOS and theory axioms

- the whole input problem is the SOS
- added theory axioms go directly to active
- new, fourth -sos option value: theory
- Also applies to problems without explicit conjecture!

SOS for Theories

SOS and theory axioms

- the whole input problem is the SOS
- added theory axioms go directly to active
- new, fourth -sos option value: theory
- Also applies to problems without explicit conjecture!

Experiment (relevant SMTLIB, default strategy, 60 s)

	default mode	default mode + sos=theory
Solved	32 769	32 522
Uniques	641	394

How deep is theory reasoning?

Mining proofs for statistics:

 record maximum derivation depth of a pure theory consequence used in the proof

How deep is theory reasoning?

Mining proofs for statistics:

 record maximum derivation depth of a pure theory consequence used in the proof

Experiment (relevant SMTLIB, default strategy, 60 s)

Depth	count			
0	31 959			
1	209			
2	304			
3	200			
4	49			
5	21			
6	27			

What do useful pure theory consequences look like?

Example (deep pure theory consequences)

$$0 < x \lor x < 4$$

from UFLIA/sledgehammer/TwoSquares/z3.637729.smt2

$$\neg((x + (y + ((-x) + 2.0))) < y)$$
 and $\neg(2.0 + x < x)$

from NRA/keymaera/ETCS-essentials-live-range2.proof-node1388.smt2

What do useful pure theory consequences look like?

Example (deep pure theory consequences)

$$0 < x \lor x < 4$$

from UFLIA/sledgehammer/TwoSquares/z3.637729.smt2

$$\neg((x + (y + ((-x) + 2.0))) < y)$$
 and $\neg(2.0 + x < x)$

 $from \ NRA/key maera/ETCS-essentials-live-range 2. proof-node 1388. smt 2$

Note that:

large constants must be obtained by combining the basic axioms

What do useful pure theory consequences look like?

Example (deep pure theory consequences)

$$0 < x \lor x < 4$$

from UFLIA/sledgehammer/TwoSquares/z3.637729.smt2

$$\neg((x + (y + ((-x) + 2.0))) < y)$$
 and $\neg(2.0 + x < x)$

from NRA/keymaera/ETCS-essentials-live-range2.proof-node1388.smt2

Note that:

- large constants must be obtained by combining the basic axioms
- a clumsy search for a useful instance?

Explicitly liming depth of pure theory consequences

	Count when threshold =								
Depth	0	1	2	3	5	10	∞		
0	32 522	32 253	32 130	32 061	32 162	32 040	31 959		
1		552	237	209	216	208	209		
2			551	314	310	307	304		
3				312	254	212	200		
4					69	48	49		
5					61	21	21		
6						26	27		
total	32 522	32 805	32 918	32 896	33 072	32 863	32 769		

Let us denote the depth threshold T

• solved with T = n can still be solvable with T = m < n

Let us denote the depth threshold T

- solved with T = n can still be solvable with T = m < n
- decreasing T can dramatically <u>decrease</u> the solution time and length of the found proof

Let us denote the depth threshold T

- solved with T = n can still be solvable with T = m < n
- decreasing T can dramatically <u>decrease</u> the solution time and length of the found proof
- decreasing T can also dramatically <u>increase</u> the solution time and length of the found proof

Let us denote the depth threshold T

- solved with T = n can still be solvable with T = m < n
- ullet decreasing T can dramatically $\underline{\text{decrease}}$ the solution time and length of the found proof
- decreasing T can also dramatically <u>increase</u> the solution time and length of the found proof

Experiment (relevant SMTLIB, smtcomp mode, 1800 s) competition mode set sos=theory threshold=5 Solved 37 009 36 821 Uniques 254 66

Summary

- adapted SOS for dealing with theory axioms
- tuned by a derivation depth parameter
- promising initial experiments

Summary

- adapted SOS for dealing with theory axioms
- tuned by a derivation depth parameter
- promising initial experiments

Ideas and plans for future work:

 better understand relations to other theory reasoning techniques

Summary

- adapted SOS for dealing with theory axioms
- tuned by a derivation depth parameter
- promising initial experiments

Ideas and plans for future work:

- better understand relations to other theory reasoning techniques
- what are the useful (deep) theory consequences? could they be precomputed?

Summary

- adapted SOS for dealing with theory axioms
- tuned by a derivation depth parameter
- promising initial experiments

Ideas and plans for future work:

- better understand relations to other theory reasoning techniques
- what are the useful (deep) theory consequences? could they be precomputed?
- distinguish "explosiveness" of axioms on case by case basis

Summary

- adapted SOS for dealing with theory axioms
- tuned by a derivation depth parameter
- promising initial experiments

Ideas and plans for future work:

- better understand relations to other theory reasoning techniques
- what are the useful (deep) theory consequences? could they be precomputed?
- distinguish "explosiveness" of axioms on case by case basis

Thank you for your attention!