
F-IDE 2019 Pre-prints

September 24, 2019

2

3

F-IDE 2019 preface

Preface

This volume contains the pre-prints of the papers presented at F-IDE 2019: 5th Workshop
on Formal Integrated Development Environment held on October 7, 2019 in Porto as part of
FM week. It has been generated with the easychair tools, which supported the overall review
process of F-IDE. Revised versions of these papers will be published in the EPTCS series after
the workshop.

The aim of the F-IDE workshop is to provide a forum for presenting and discussing research
efforts as well as experience returns on design, development and usage of formal IDE aiming
at making formal methods ”easier” for both specialists and non-specialists. There were 8
submissions. Each submission was reviewed by at least 3 program committee members. The
committee decided to accept all 8 papers. The program also includes 1 invited talk.

September 23, 2019
Gif Sur Yvette Cedex

Virgile Prevosto
Rosemary Monahan

Jose Proenca

4

5

F-IDE 2019 Program Committee

Program Committee

Cinzia Bernardeschi University of Pisa
José Creissac Campos University of Minho & HASLab/INESC TEC
Paul Curzon Queen Mary University of London
Damien Doligez INRIA
Andrea Domenici Università di Pisa
Carlo A. Furia USI - Università della Svizzera Italiana
Kenneth Lausdahl Aarhus University
Stephan Merz Inria Nancy
Stefan Mitsch Carnegie Mellon University
Rosemary Monahan Maynooth University
Yannick Moy AdaCore
Andrei Paskevich Université Paris-Sud, LRI
François Pessaux ENSTA ParisTech
James Power Maynooth University
Virgile Prevosto CEA Tech List
Jose Proenca CISTER-ISEP and HASLab-INESC TEC
Steve Reeves University of Waikato
Bernhard Rumpe RWTH Aachen University
Claudio Sacerdoti Coen University of Bologna
Silvia Lizeth Tapia Tarifa University of Oslo
Mattias Ulbrich Karlsruhe Institute of Technology
Laurent Voisin Systerel
Makarius Wenzel sketis.net
Yi Zhang US FDA

6

Additional Reviewers

Pessaux, François
Wachtmeister, Louis
Weigl, Alexander

7

8

Table of Contents

What is KeY’s key to software verification? 9
Wolfgang Ahrendt .

Experience Report: Towards Moving Things with Types - Helping Lo-
gistics Domain Experts to Control Cyber-Physical Systems with
Type-Based Synthesis . 11
Jan Bessai, Moritz Roidl and Anna Vasileva

Automated deductive verification for Ladder programming 17
Denis Cousineau, David Mentré and Hiroaki Inoue

Deeply Integrating C11 Code Support into Isabelle/PIDE 23
Frédéric Tuong and Burkhart Wolff

A component-based formal language workbench 39
Peter Mosses .

An Integrated Development Environment for the Prototype Verifica-
tion System . 45
Paolo Masci and Cesar Munoz

The TLA+ Toolbox . 60
Markus Alexander Kuppe .

Simulation under arbitrary temporal logic constraints 75
Julien Brunel, David Chemouil, Alcino Cunha and Nuno Macedo

Tool Support for Validation of Formal System Models: Interactive
Visualization and Requirements Traceability 81
Eduard Kamburjan and Jonas Stromberg

9

1

Keynote Speaker

Speaker: Wolfgang Ahrendt, Chalmers University of Technology, Sweden

Title: What is KeY’s key to software verification?

Abstract: KeY is a deductive software verification approach and system, whose most elaborate ver-
sion targets Java programs. In a recent KeY case study, which attracted attention also outside formal
method circles, verification with KeY could reveal a bug in the main sorting routine of OpenJDK. While
this talk will also cover the user interface of KeY, the focus of the discussion is more fundamental. KeY
follows to a signifiant extent principles which are different from other deductive verification systems, on
the level of the program logic, the proof calculus, the interaction with the prover, the transparency of
proofs, and the usage of back-end solvers. In this talk, I will discuss the impact of these aspects, with a
special focus on usability. In addition, we will look at how the design of the logic and calculus influenced
the integration with other validation techniques, like test generation and runtime verification.

Submitted to:
F-IDE 2019

c© J.Bessai & M. Roidl & A. Vasileva
This work is licensed under the
Creative Commons Attribution License.

Experience Report: Towards Moving Things with Types –
Helping Logistics Domain Experts to Control Cyber-Physical

Systems with Type-Based Synthesis

Jan Bessai Moritz Roidl Anna Vasileva
Technical University of Dortmund

Dortmund, Germany
jan.bessai, moritz.roidl, anna.vasileva@tu-dortmund.de

One of the ultimate goals of software engineering is to leave virtual spaces and move real things. We
take one step toward supporting users with this goal by connecting a type-based synthesis algorithm,
Combinatory Logic Synthesizer ((CL)S), and its IDE to a logistics lab environment. The environment
is built and used by domain experts, who have little or no training in formal methods, and need to
cope with large spaces of software, hardware and problem specific solution variability. It consists of
a number of Cyber-Physical Systems (CPS), including wheel-driven robots as well as flying drones,
and it has laser-based support to visualize their possible movements. Our work describes results on
an experiment integrating the latter with (CL)S. Possibilities and challenges of working in the domain
of logistics and in cooperation with its experts are outlined. Future research plans are presented and
an invitation is made to join the effort of building better, formally understood, development tools for
CPS-enabled industrial environments.

1 Introduction

Logistics is the science (and sometimes art) of moving things. Connections to computer science are
immediate: paths must be planned, resources scheduled, object positions tracked, and automatization
demands software systems to control physical actors. Traditionally, logistics is an engineering discipline.
As such, it has an unspoken predisposition toward algorithms that use numeric methods for optimizing
highly context-specific parameters. Examples include Dijkstra’s algorithm [7] for finding optimal paths
and Kalman Filters [13] for estimating the position of moving objects. However, symbolic formal meth-
ods, which are the subject of large parts of computer science, are rarely transferred to the field. Yet, it
has all the potential for their application. Systems scale from small packaging stations to country span-
ning interdependent logistical networks, while fine-tuned optimized numbers rarely scale at all. Hard-
and software require consistent reasoning across daily evolving product lines of logistical equipment.
Pareto-optimal solution spaces can be vast or even infinite, in which case they need symbolic represen-
tations. Finally, just to name a few of the potentials, formal guarantees can prevent catastrophic failures
and thereby not only safe money but also lives, if systems are operated by humans. This paper is part of
a collaborative effort at the Technical University of Dortmund to identify and overcome reasons for the
lack of transfer. The authors are a mixed team of researchers in computer science (Bessai, Vasileva) and
logistics (Roidl). Starting point of the investigation is an experiment, which uses type-based synthesis to
find ways through a labyrinth. The scenario has been previously studied to illustrate progress on an IDE
for the Combinatory Logic Synthesis, (CL)S, Framework [6]. It is described in Sec. 2. The problem of
finding ways is sufficiently close to logistics to provide a starting point and to be practically evaluated
in a logistics test lab, which is described in Sec. 3. Conducting the experiment required extensions to
existing software systems and it quickly became clear that new ways of visualizing solutions would be
required to cater domain expert needs. Extensions and results obtained this way are described in Sec. 4.

2 Towards Moving Things with Types

They go beyond what was considered in the domain-independent design of the IDE previously developed
for (CL)S. Finally, some future plans and lessons learned from the ongoing cooperation are discussed
in Sec. 5. We identify some key technical principles to make collaborations easier, and also focus on
the social aspects, which can help to transfer knowledge. The discussion of future plans includes an
invitation to join our practical efforts, potentially by testing and improving other tools with us.

2 Synthesizing Robot Paths with Types

The implementation of (CL)S provides a framework for the automatic composition of software compo-
nents from domain-specific repositories [5, 10, 16]. Automatic composition is performed by answering
the type inhabitation problem of relativized Combinatory Logic with intersection types [14] Γ `? : τ .
That is, given a repository of typed combinators Γ, find all combinatory terms M (inhabitants) of the goal
type τ . The (CL)S Framework is implemented in Scala. It is meant to be a tool for programmers as well
as engineers with knowledge in programming who are not necessarily familiar with type theory.

In order to improve usability of the framework, we developed a web-based IDE [2, 6]. It is specif-
ically focused to improve comprehensibility and traceability of the inhabitant search process. The IDE
provides a graphical overview of the inhabitants generated by the algorithm in form of hypergraphs
[8, 12]. We developed a step-wise build of the hypergraphs in order to explain the generation of solutions.
The web IDE also emits warnings if there are unused combinators or uninhabited types. This exposes
problematic specifications, which can be further analyzed in a perspective for presenting domain-specific
repositories.

Additionally to the perspectives outlined above, which were previously discussed in [6], we devel-
oped features that focus on presenting local rather than global properties of solutions. A perspective of
the web IDE provides a list of inhabitants, s.t. a user can inspect each inhabitant and the corresponding
hypergraph separately. Intersection types allow combinators to have more than one type. For instance, if
we have a combinator:

down : (MovementPlan→MovementPlan)∩ (Pos(0,0)→ Pos(1,0))∩ (Pos(1,2)→ Pos(2,2))

it can be used to go from position (0,0) to (1,0) and from position (1,2) to (2,2), while transforming a
plan of movements to a plan of movements. Inhabiting a type such as MovementPlan∩Pos(2,2) requires
selecting components form the type in a process called covering. The IDE provides help to understand
and debug this process for a given combinator and target, which is especially useful if combinator types
are underspecified and lack required components.

0 1 2
0
1 •
2
3 F

Figure 1: Labyrinth
example

We also developed a filtering function based on satisfiability modulo theories
(SMT) [12]. In this way, additional constraints can be used to restrict the set
of inhabitants and avoid trivial solutions such as reverse(reverse(s)) for some
sequence s. The IDE supports adding and removing some domain-independent
structural constraints, which are helpful in many situations.

The synthesis of robot paths is based on the labyrinth example [6], an instance
of which is shown in Fig. 1. The size of labyrinths, blocked paths (indicated
by black boxes), and start (indicated by a black dot) as well as end positions
(indicated by a star) are user-defined. In Fig. 1, we have 3×4 labyrinth with
start position Pos(1,2) and goal position Pos(3,1). The repository Γ includes

combinators corresponding to the allowed move directions (up,down, le f t and right), a combinator that
provides the starting position as well as their type descriptions. The types in the repository represent all
valid one-step moves.

J.Bessai & M. Roidl & A. Vasileva 3

3 Logistics Research Lab

The research lab is designed for rapid prototyping of CPS [4]. It is situated in an existing lightweight
construction building that is similar to common industrial buildings used in logistics operations. It fol-
lows the basic concept of a highly flexible development testbed that is free of fixed or permanently
installed equipment. The testbed is surrounded by several observation systems installed on the ceiling,
at the walls, and within the floor. It also includes a laser projection system, which is the most important
component for this paper. The experimentation space is 22 m long, 15 m wide, and up to 3.5-4 m high.
Eight laser projectors cover the full area and can project coloured vector graphics on the ground floor.
The selection process favoured projectors with a high frame rate rather than accuracy.

Figure 2: Logistics research lab overview

MoCap System

Physical Space (Ground)

(CL)S Framework

Unity (Simulation, Global Control)

Unmarked
Objects

Marked Objects

Passive Robots

MoCap SystemLaser Projection

Virtual 3D Space

Virtual Objects Physical Representations

Figure 3: Logistics research lab architecture

Fig. 2 shows a typical use of the system. A person, robot and box are tracked by the MoCap (Motion
Capturing) system. The MoCap system consists of 40 infrared cameras by Vicon [15]. The data stream
is accessible over network to multiple clients and delivers position and rotation of tracked objects in
three dimensions. In addition to simple physical objects, several marker-suits are available for tracking
persons which are then used to generate data streams of complex skeletal models including individual
body parts. In the foreground, the laser system projects a visual representation of the current state of the
steering algorithm of the robot. The projected circle around the person in the background represents the
safety area which the robot is not allowed to enter. The box on the robot contains an embedded system
(black square on the front) that communicates with the robot for transportation needs.

4 Experiment and Extensions

The debugging facilities discussed in Sec. 2 help with understanding types and to explore domain-
independent technical aspects of the synthesis algorithm. However, a layer of interpretation is required to
map them to any given concrete scenario. Here diversity of training and mindsets really helped us to go
forward. While computer scientists working on formal methods are usually trained to aim for solutions
with maximal feasible mathematical generality, engineers are focused on smallest viable solutions. In

4 Towards Moving Things with Types

Figure 4: Unity 3D Representation Figure 5: Laser Projection System Representation

the spirit of good engineering practices, we ventured to build a minimal prototype to demonstrate the
following properties:
1. (CL)S is applied to a logistical setting within the demonstration capabilities of the logistics lab.
2. Scenario-specific meaningful debugging is possible without consequences of damaged hardware.
3. Users interactively control the debugging process.
4. Hardware failures are separated from logical specification problems.
5. Existing technologies are used unchanged if possible, preferring adapters when necessary.
An explicit non-goal was to expect a realistic solution compliant with industry standards.

The labyrinth example, incidentally, matched the first goal, which is why we decided to use it as a
starting point. Fig. 3 shows the architecture connecting it to the logistics lab. It contains four layers.
The bottom layer represents the real world. It contains real entities (marked objects), which are robots
and obstacles. It is also augmented by laser projections of virtual objects (unmarked objects), e.g. start
points and goals. The second layer represents the fixed lab installation discussed above. All marked
objects in physical space are mirrored via live MoCap connection into a virtual environment that makes
up the third layer. It is realized using the Unity 3D [1] game engine and capable of virtually representing
physical states, simulating them when no connection to the lab is available, and controlling them by
sending commands to the second layer. Its virtual abstractions of physical state are mapped to compo-
nent repositories for (CL)S, which is shown in the topmost layer. Solutions synthesized by (CL)S are
movement commands for robots and sent back to Unity, which either just simulates them in a 3D model
or forwards them to the laboratory equipment. In line with goals 2 and 4, we found it useful to virtualize
robots, turning them into laser projections rather than immediately trying to control real hardware. A 3D
simulation in Unity and its laser projection are shown in figures 4 and 5. They show the end state of the
labyrinth example (s. Section 2) where the robot has already reached the goal position (3, 1). A video of
the laser projected movements generated by (CL)S is available online [3]. Future development will fully
exploit the possibility to update labyrinths based on real world obstacles detected by motion capturing,
which would be in line with goal 3.

Connecting the different layers was a major challenge, because all of them are preexisting com-
ponents implemented in different programming languages (Python and C++ for physical components,
C# for Unity and Scala for (CL)S). The bottom layers were already connected by the ISO-standardized
MQTT network protocol [11], which made it natural to also use it for the communication with (CL)S.
Here, choosing a standard language to implement our tool was crucial, because we were able to use
Eclipse Paho [9], an off-the-shelve implementation of MQTT, instead of going through the tedious er-
ror prone process of developing our own networking infrastructure. Currently, all connections in Fig.3

J.Bessai & M. Roidl & A. Vasileva 5

are implemented using MQTT. The dashed arrows have been implemented, but at the time of writing
still need to be logically integrated into the mapping from Unity to (CL)S, which means labyrinths are
currently specified in source code and robots are visualized with lasers.

5 Lessons Learned and Future Plans

The experiment we presented is rather small and just a starting point, but already provided us with
some technical and non-technical insights, which can be useful for other researchers willing to engage
in interdisciplinary collaboration. Technically, one of the most important aspects was to have a formal
system with clear boundaries. The (CL)S Framework is designed to collaborate with others by not
insisting to share any of its platform specific requirements. Instead, the experiment used a complete (even
physical) separation with a light-weight MQTT network interface. This allowed almost zero integration
overhead and meant no software systems had to be rewritten. The framework and system to control are
both implemented in mainstream languages with preexisting library support for network communication.
We conjecture that some other platforms, e.g. with external domain specific languages, would have
caused much higher development costs. Being compatible with mainstream technology was key. There
was just no way we could have foreseen which networking libraries would be useful for our project.
Insisting on our own tech-stack would have caused the project to end before it started. Also, on a technical
level it quickly became clear, that domain-independent generic visualization methods were not sufficient.
While domain experts can appreciate that there is a formal model, for them it is just a vehicle to solve
a real world problem. Practically, this means specific tools are always preferred over abstract data. For
debugging and testing, users should be presented with a (graphical) language close to what they know.
Laser-based visualization and 3D-Modeling, which bridge the gap between virtual and physical systems,
are perfect tools to provide a good, tangible user experience. On a social level, small scale prototypes
and specific solutions, that do not yet scale to a large system, are much more acceptable to engineers
than generic solutions, if the smaller scale implies less effort to get real things moving. This is very
different from expert communities with more focus on mathematical theory, where generic solutions are
expected and not filling in the details to get to a specific executable system is to be forgiven more easily,
or even expected, because details are considered to be time-consuming and repetitive. Another social
lesson is to consider the training of the target audience. Technicalities, such as obtaining the framework
code from Git or executing it, imposed negligible effort, which is perhaps surprising for theory-minded
people. For our small scale experiment, conveying the purpose of synthesis, the meaning of intersection
types and establishing a shared vocabulary took more time than the actual development. While for us
personal communication was the easiest way, this may not always be easily possible (e.g. if teams are
situated in separate locations). Future developments should take explaining the language of the tools into
account. We feel, that contact to other researchers is crucial to do this, because identifying conventions
of language once they are established, is difficult.

In this spirit, extend our invitation to other researchers to collaborate on new experiments, possibly
integrating more formal tools into the logistics lab. Our own upcoming next experiments will scale up
the experiment to more realistic scenarios, where (CL)S synthesizes code computing paths instead of
directly computing the paths. Integrating some of the much more sophisticated existing path finding al-
gorithms will allow the transition to a more fine granular view of the world than labyrinths with blocked
paths. Specifically it will enable the treatment of obstacles with non-rectangular shapes, non straight
paths between points, speed and energy considerations during move and perhaps even reactive systems,
where the position of obstacles can change (e.g. by having more robots). In future CPS-based logistics
systems, large numbers of autonomous and networked entities will arrange themselves ad-hoc in tempo-
rary constellations to provide logistics services in coordination with humans. The development of these

6 Towards Moving Things with Types

heterogeneous systems presents a challenge to engineers with their complexity of interacting hard- and
software in industrial environments. It is our opinion that user-friendly formally understood development
tools will be crucial to have any chance of facing this challenge.

References
[1] Unity. Available at https://docs.unity3d.com/Manual/UnityManual.html.
[2] Anna Vasileva & Jan Bessai (06.06.2019): cls-scala-ide. Available at https://github.com/

combinators/cls-scala-ide.
[3] Anna Vasileva & Moritz Roidl (06.06.2019): Laser Demonstration. Available at https://github.com/

combinators/labyrinth.
[4] Haci Bayhan, Aswin Karthik Ramachandran Venkatapathy, Johannes Dregger, Felix Zeidler, Moritz Roidl &

Michael ten Hompel (2017): A Concept of an Industry 4.0 Research Lab for Future Intralogistics Technolo-
gies and Services. 3rd Interdisciplinary Conference on Production, Logistics and Traffic, ICPLT.

[5] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens & Jakob Rehof (2016): Combinatory Pro-
cess Synthesis. In: Leveraging Applications of Formal Methods, Verification and Validation: Foundational
Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016,
Proceedings, Part I, pp. 266–281, doi:10.1007/978-3-319-47166-2 19.

[6] Jan Bessai & Anna Vasileva (2018): User Support for the Combinator Logic Synthesizer Framework. Elec-
tronic Proceedings in Theoretical Computer Science 284, pp. 16–25, doi:10.4204/EPTCS.284.2.

[7] Edsger W Dijkstra (1959): A note on two problems in connexion with graphs. Numerische mathematik 1(1),
pp. 269–271.

[8] Engelfriet, Joost & Heyker, Linda (1992): Context-free hypergraph grammars have the same term-generating
power as attribute grammars. Acta Informatica.

[9] Eclipse Foundation (2019): Paho. Available at https://www.eclipse.org/paho/.
[10] George T. Heineman, Jan Bessai, Boris Düdder & Jakob Rehof (2016): A Long and Winding Road Towards

Modular Synthesis. In: ISoLA 2016, pp. 303–317, doi:10.1007/978-3-319-47166-2 21.
[11] International Organization for Standardization (ISO) (2016): ISO/IEC 20922:2016: Information technology

– Message Queuing Telemetry Transport (MQTT) v3.1.1. ISO: Geneva, Switzerland, pp. 1–73.
[12] Fadil Kallat, Tristan Schaefer & Anna Vasileva (2019): CLS-SMT: Bringing Together Combinatory Logic

Synthesis and Satisfiability Modulo Theories. In Proceedings of the Proof eXchange for Theorem Proving
2019.

[13] Rudolph Emil Kalman (1960): A new approach to linear filtering and prediction problems. Journal of basic
Engineering 82(1), pp. 35–45.

[14] Jakob Rehof (2013): Towards Combinatory Logic Synthesis. In: BEAT 2013, 1st International Workshop on
Behavioural Types, ACM.

[15] Vicon (05.09.2019): Motion Tracking Devices. Available at https://www.vicon.com/.
[16] Jan Winkels, Julian Graefenstein, Tristan Schäfer, David Scholz, Jakob Rehof & Michael Henke (2018):

Automatic composition of rough solution possibilities in the target planning of factory planning projects by
means of combinatory logic. In: ISoLA 2018, Springer, pp. 487–503.

Submitted to:
F-IDE 2019

c© D. Cousineau, D. Mentré & H. Inoue

Automated deductive verification for Ladder programming

Denis Cousineau David Mentré
Mitsubishi Electric R&D Centre Europe (MERCE)

Rennes, France
{d.cousineau,d.mentre}@fr.merce.mee.com

Hiroaki Inoue
Mitsubishi Electric Corporation

Amagasaki, Japan
Inoue.Hiroaki@ah.MitsubishiElectric.co.jp

Ladder Logic is a programming language standardized in IEC 61131-3 and widely used for program-
ming industrial Programmable Logic Controllers (PLC). A PLC program consists of inputs (whose
values are given at runtime by factory sensors), outputs (whose values are given at runtime to factory
actuators), and the logical expressions computing output values from input values. Due to the graph-
ical form of Ladder programs, and the amount of inputs and outputs in typical industrial programs,
debugging such programs is time-consuming and error-prone. We present, in this paper, a Why3-
based tool research prototype we have implemented for automating the use of deductive verification
in order to provide an easy-to-use and robust debugging tool for Ladder programmers.

1 Introduction

Programmable logic controllers (PLC) are industrial digital computers used as automation controllers of
manufacturing processes, such as assembly lines or robotic devices. PLCs can simulate the hard-wired
relays, timers and sequencers they have replaced, via software that expresses the computation of outputs
from the values of inputs and internal memory. Ladder language, also known as Ladder Logic, is a
programming language used to develop PLC software. This language uses circuits diagrams of relay
logic hardware to represent a PLC program by a graphical diagram. This language was the first available
to program PLCs. It is now standardized in IEC 61131-3 [1] standard among other languages but is still
widely used and very popular among technicians and electrical engineers.

In conventional development of software, a great part of the development time is dedicated to debug-
ging. Debugging programs is crucial in the case of Factory Automation (FA) since bugs in factories can
be extremely expensive in terms of human and material damages, and plant downtime. Debugging a Lad-
der program is particularly difficult, time consuming and costly. Bugs can be depicted as the violation,
at some point of a program, of some property concerning values of inputs/outputs and local memory of
the program. The objective of debugging consists in detecting those property violations before running
the code in production, i.e. finding initial values of inputs and internal memory that lead to a property
violation, when executing the program. Since it is almost impossible (and way too costly) to check all
possible executions of a program, the usual method consists in developing and running some tests (i.e.
executing the program on a particular initial configuration and check its behavior). In industry, tests used
to be run directly in the factory, which is very costly and risky. Nowadays, most of the tests are run on
a software simulation, but some are often still run in the factory for a last check of the program behav-
ior in real conditions of use, or for bypassing the difficulty to simulate particular sequences of inputs.
Even when run on a software simulation, tests-based processes are still time-consuming and cannot be
exhaustive.

On the other hand, some research work has been done concerning formal analysis of Ladder pro-
grams. Most of this work [7] [6] [9] [10] concerns the verification of temporal properties of Ladder

2 Automated deductive verification for Ladder programming

programs (a Ladder program being continuously executed in the PLC), and uses different model check-
ing techniques. Some other work used deductive verification to detect data races [13] and prove safety
properties [12] (with some temporal aspects) of Ladder programs. Model-checking techniques are lim-
ited by the state explosion problem they face when addressing real-world problems. On the contrary,
deductive verification may give full confidence in the obtained results but may also prevent from a full
automatization of the process (in terms of proof automation and specification formalization).

Our objective in this work was to make a proof of concept of an easy-to-use and robust tool for
debugging Ladder programs, both increasing the quality of the code and decreasing the time to deploy, a
crucial point in the context of Industry 4.0, in which assembly lines are more often reconfigured, hence
code evolves frequently. We had to determine a good tradeoff to offer a high level of automation, together
with providing a strong confidence in the given results (in particular when no bug is found). The solution
we chose is similar to what SPARK/GnatPro [8] has done for Ada code. For the easy-to-use part, we
targeted a full automated tool, so that it could be used by regular engineers with no needed knowledge
in formal methods. We also focused on the information given to the programmer when an error is
found, for easing errors fixing. In order to obtain a fully automated and complete tool, we targeted to
detect runtime errors by the mean of deductive verification. We focused on runtime errors like integers
overflows, divisions by zero, violations of Ladder instructions’ pre-conditions, etc...

We based our prototype implementation on the Why3 platform [4]. Why3 offers an expressive for-
malization language, an efficient Weakest-Precondition (WP) calculus [5] implementation and a rich API
to send the obtained verification conditions to several automated solvers. Moreover, with its labels mech-
anism, Why3 allowed us to keep code information during the whole automatic process, for providing rich
and useful information to the programmer in case a bug is detected.

2 Ladder Logic

Ladder Logic is a graphical programming language using relay logics diagrams to represent a PLC
program. A Ladder program takes inputs values (contacts) that correspond to the fact that physical
relays are wired, not wired, pulsing (rising edge) or downing (falling edge) and other values stored in
the internal memory of the PLC (booleans, integers, floating point, strings, etc...). A Ladder program
can output boolean values to the physical relays of the factory (coils) or it can call instructions, that may
modify the values of the internal memory of the PLC (devices). Graphically, contacts are located at the
left of the diagram. They can be combined in a serial way or in a parallel way (the obtained value is then
the conjunction, resp. the disjunction of the two contacts values). Coils and instructions are activated
when the combination of contacts at their left gives a wired value, and they can also be parallelized (in
that case, there are either all activated or all deactivated). A line with contacts, coils and instructions is
called a rung, and a program (a diagram) is composed of several rungs.

Figure 1: Ladder program example

Figure 1 depicts a very simple Ladder example. This program has one contact X0, and when the physical

D. Cousineau, D. Mentré & H. Inoue 3

relay corresponding to that input is activated, the program calls instruction INC that increments the value
of its device argument D0, and then calls instruction BCD with D0 and D1 devices as respectively input
and output arguments. The BCD instruction converts a 16 bits integer into a 16 bits BCD (Binary-Coded
Decimal) integer. The 16 bits BCD format represents 4 digits decimal numbers, using 4 bits to represent
each of the 4 digits. It is typically used for display purpose. Since this format can only represent 4 digits
decimal numbers, the BCD instruction raises an error when it is called on a device value that does not
belong to interval [0;9999]. This is typically the kind of runtime errors we want to detect with the tool we
developed. Regarding this example, we were also interested in overflows that could occur when calling
instruction INC. The example we present is very simple but typical industrial programs we had access
to have hundreds of lines, hundreds of inputs, devices and outputs, and dozens of instructions calls. As
a last point, such a Ladder program is executed cyclically in a synchronous way: first inputs are read,
then the program is executed and eventually outputs are written. One single execution of the program is
called a scan.

3 Modelling Ladder in Why3

Figure 2: Why3 formalization of Ladder BCD instruction

We chose not to model the
temporal/cyclic aspect of ex-
ecution of Ladder programs,
but only one scan in order
to detect error scenarios, i.e.
values of inputs and devices
at scan beginning (before ex-
ecution) that may lead to a
runtime error. We developed
a library of Ladder instruc-
tions formalizations. We de-
pict here the formalization
of the BCD instruction. This
formalization is composed of
two functions. The first one,
bcd_compute, computes the
4 digits of an decimal inte-
ger argument and returns the
decimal value of the BCD
representation of those 4 dig-
its. The second one, bcd

takes three arguments: input is the wiring value of the line to which the instruction is connected, src
is the value of the input device, and prev_val is the value of the output device before execution of the
instruction. The requires pre-condition states that either input does not activate the instruction or src
must belong to interval [0;9999]. You can notice the two strings labels in the pre-condition. The first
allows asking solvers to find a counter-example if they cannot prove the verification conditions asso-
ciated with that pre-condition. The second one allows keeping semantic information during the whole
process, in order to give back this information to the programmer in case an error scenario is found. The
returns post-condition states that the function returns the previous value of the output device when the
instruction is not activated, and the actual BCD computation otherwise.

4 Automated deductive verification for Ladder programming

We developed around fifty such formalizations of Ladder instructions in order to run our tool pro-
totype on the industrial program samples we had access to. Then our translation of Ladder programs
to Why3 models consists in translating on-the-fly the logical expressions that correspond to coils and
their combinations, and combine them with calls to the instructions formalizations of our library, using a
single-state-assignment [11] transformation to handle the iterative aspect of Ladder programs.

4 Prototype architecture

Figure 3: Prototype architecture

Our tool automatically 1© translates Ladder pro-
grams into Why3 modules that refer to the in-
structions formalizations described in the previ-
ous section. We implemented our own library
to produce Why3 text files, to help the reuse of
generated modules. During the translation, we
use labels to keep information on code location
of instruction calls to give improved feedback to
the programmer when an error is found.
Then we use Why3’s WP calculus to 2© compute
verification conditions that correspond to pre-
conditions of instructions, and use Why3 API
to 3© send those verification conditions to SMT-
solver CVC4 [3] (we chose CVC4 for its over-
all good performances and its ability to generate
counter-examples when a verification condition
cannot be proved). Couter-examples are then 4©
interpreted as initial values of the original pro-
gram and simulated execution 5© recomputes,
from those inital values, all the intermediate values of devices, wires, etc... from the beginning of the
program to the location where the error occurs. Finally, we 6© provide a graphical feedback to the
programmer, with those intermediate values information and informations concerning the error the tool
found.

5 Graphical user feedback

We implemented a proof of concept of a graphical interface which gives back to the programmer infor-
mation about found bugs, in an easy-to-understand manner. The aim of such an interface is to be directly
integrated in Ladder IDEs. We based our prototype implementation on the Ocsigen web framework [2]
which allowed us to quickly prototype a web-based graphical interface displaying information coming
from our tool prototype implemented in OCaml. We identified three pieces of information that should be
displayed to the programmer when a bug is found: the error location (where the error occurs), the error
reason (why the error occurs) and the error scenario (when the error occurs). The error location is en-
coded during the on-the-fly translation from the Ladder program to the Why3 model: to each instruction
call is attached a label which contains its location in the original source code. This label is propagated
during the WP calculus, appears in the verification condition sent to the automated solver and comes
back in the counter-example the solver gives when it finds one. The error reason is encoded in the Why3

D. Cousineau, D. Mentré & H. Inoue 5

instructions library as shown in figure 2. It is attached, with a "expl:" label, to pre-conditions of Ladder
instructions, and is propagated during the whole process, like code locations labels. As explained in the
previous section, the error scenario consists in the initial and intermediate values that lead to the error.
It is re-computed from solvers’ counter-examples, and is expressed with colors for wiring values (blue
when a wire is active, grey otherwise) and figures for other values above the corresponding devices.

Figure 4: Graphical feedback

Figure 4 shows a screenshot of
this graphical interface. This is
what our prototype returns when
run on example of figure 1. In
this case, the interface states the
errors occurs at BCD instruction
call location (it is colored in red).
It also states that the error rea-
son is an out-of-range call. And
it gives the error scenario: con-
tact X1 is active hence colored in
blue, then the wires at its right
are also active and colored in
blue. After execution of instruc-
tion INC, value stored in device
D1 is 10,000, which leads to the
error, when given as argument of instruction BCD.
We believe that this interface, somehow inspired by what already exists in Ladder simulation software,
in particular for the colors, may be very useful for debugging Ladder programs, in particular when they
reach a critical size with hundreds of rungs, inputs, devices, outputs, etc... Indeed, it is much easier to
understand why an error occurs with this kind of interface, than when using tests, in which case only the
initial configuration of the program is given.

6 Performances

Our proprietary prototype is implemented in OCaml, in about 13,000 lines of code, including 3,000 lines
for our library to produce Why3 textual files and 4,000 lines for the graphical user interface. We made
some optimization effort concerning the modelization of Ladder language in Why3, in order to obtain a
fully automated and fast process. But we made no optimization in our OCaml code, and even did not
parallelize the calls to SMT-solvers. Nonetheless our protype has already pretty good performances. We
ran our prototype tool on an industrial code sample with 1,657 steps (i.e. contacts, coils and instruction
calls), among which three instructions calls could lead to an error. On a virtualized Ubuntu 18.04, running
in VirtualBox 5.2, under Windows 10 on a Intel Core i7-7500U 2.70 GHz laptop, it takes only 3 to 4
seconds for our prototype to answer. Almost all the time is taken by CVC4 (about one second for each of
the three verification conditions that are handled sequentially). This gives us confidence in the fact that
the technology and architecture we chose are relevant for the implementation of a real industrial tool.

7 Conclusion

The objective of this work was to make a proof of concept of a formal methods-based debugging tool for
industrial Ladder programs. For such a debugging tool to be incorporated in an industrial process, we

6 Automated deductive verification for Ladder programming

think that it should be transparent and bring strong added value to the user. First, our proof of concept
shows that such a formal debugging tool can be transparent: it needs no specific knowledge since all the
process is fully automatic (Ladder programmers do not need to write a formal specification, and even less
a model of their codes); it is very fast so it may be run during the programming phase of the development
process and not in a separated phase; it may be fully integrated in a Ladder IDE as our GUI prototype
shows. Second, our proof of concept shows the added value such a tool could have in regard to current
debugging tools: our prototype can give back to the programmer very precise and useful information
when it detects an error (using a intelligible interface); and the deductive verification technique we used,
thanks to the Why3 platform, gives a strong confidence when the tool detects no runtime error (since it
is equivalent to test all possible inputs and devices values configurations).
A drawback of our prototype concerns the fact that it may raise false positive alarms, since it only
considers one scan of the Ladder program. For example in Figure 1, value of device D0 may be changed
after the BCD instruction call, such that value 10,000 is never reached. Nevertheless, our prototype would
still raise an alarm. In future work, we plan to decrease the number of false alarms by considering a few
consecutive scans in our Why3 Ladder formalization.
Another way to improve our prototype could be to provide some quickfix-like mechanisms to program-
mers. In example of Figure 1, our prototype could propose to the programmer to add automatically,
before the BCD instruction call, a line that resets D0 when it does not belong to range [0;9999].

References

[1] (2013): IEC 61131-3:2013, Programmable controllers - Part 3: Programming languages.

[2] V. Balat (2006): Ocsigen: Typing Web Interaction with Objective Caml. In: ACM SIGPLAN workshop on
ML, Portland, United States.

[3] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds & C. Tinelli (2011):
CVC4. In: nternational Conference on Computer Aided Verification, CAV’11, Springer-Verlag, pp. 171–177.

[4] F. Bobot, J-C. Filliâtre, C. Marché & A. Paskevich (2015): Let’s Verify This with Why3. Software Tools for
Technology Transfer (STTT) 17(6), pp. 709–727.

[5] E. W. Dijkstra (1997): A Discipline of Programming. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[6] B. Fernández Adiego, D. Darvas, E. B. Viñuela, J. Tournier, S. Bliudze, J. O. Blech & V. M. González
Suárez (2015): Applying Model Checking to Industrial-Sized PLC Programs. IEEE Transactions on Industrial
Informatics 11(6), pp. 1400–1410.

[7] G. Frey & L. Litz (2000): Formal methods in PLC programming. In: IEE International conference on
systems, man and cybernetics, 4, pp. 2431–2436 vol.4.

[8] D. Hauzar, C. Marché & Y. Moy (2016): Counterexamples from Proof Failures in SPARK. In: Software
Engineering and Formal Methods, Software Engineering and Formal Methods, Springer.

[9] S. Kottler, M. Khayamy, S. R. Hasan & O. Elkeelany (2017): Formal verification of ladder logic programs
using NuSMV. In: SoutheastCon 2017, pp. 1–5.

[10] T. Ovatman, A. Aral, D. Polat & A. Osman Ünver (2014): An overview of model checking practices on
verification of PLC software. Software and Systems Modeling, pp. 1–24.

[11] B. K. Rosen, M. N. Wegman & F. K. Zadeck (1988): Global Value Numbers and Redundant Computations.
In: Symposium on Principles of Programming Languages, POPL ’88, ACM, pp. 12–27.

[12] J-M. Roussel & B. Denis (2002): Safety properties verification of ladder diagram programs. Journal Eu-
ropéen des Systèmes Automatisés (JESA) 36(7), pp. pp. 905–917.

[13] Z. Su (1997): Automatic Analysis of Relay Ladder Logic Programs. Technical Report UCB/CSD-97-969,
EECS Department, University of California, Berkeley.

Submitted to:
F-IDE 2019

© F. Tuong and B. Wolff
This work is licensed under the
Creative Commons Attribution License.

Deeply Integrating C11 Code Support
into Isabelle/PIDE

Frédéric Tuong
LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay

ftuong@lri.fr

Burkhart Wolff
LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay

wolff@lri.fr

We present a framework for C code in C11 syntax deeply integrated into the Isabelle/PIDE devel-
opment environment. Our framework provides an abstract interface for verification back-ends to be
plugged-in independently. Thus, various techniques such as deductive program verification or white-
box testing can be applied to the same source, which is part of an integrated PIDE document model.
Semantic back-ends are free to choose the supported C fragment and its semantics. In particular, they
can differ on the chosen memory model or the specification mechanism for framing conditions.

Our framework supports semantic annotations of C sources in the form of comments. Annota-
tions serve to locally control back-end settings, and can express the term focus to which an annotation
refers. Both the logical and the syntactic context are available when semantic annotations are evalu-
ated. As a consequence, a formula in an annotation can refer both to HOL or C variables.

Our approach demonstrates the degree of maturity and expressive power the Isabelle/PIDE sub-
system has achieved in recent years. Our integration technique employs Lex and Yacc style grammars
to ensure efficient deterministic parsing. We present two case studies for the integration of (known)
semantic back-ends in order to validate the design decisions for our back-end interface.

Keywords: User Interface, Integrated Development, Program Verification, Shallow Embedding

1 Introduction

Recent successes like the Microsoft Hypervisor project [14], the verified CompCert compiler [15] and
the seL4 microkernel [11, 12] show that the verification of low-level systems code has become feasible.
However, a closer look at the underlying verification engines VCC [6], or Isabelle/AutoCorres [8] show
that the road is still bumpy: the empirical cost evaluation of the L4.verified project [11] reveals that a very
substantial part of the overall effort of about one third of the 28 man years went into the development of
libraries and the associated tool-chain. Accordingly, the project authors [11] express the hope that these
overall investments will not have to be repeated for “similar projects”.

In fact, none of these verifying compiler tool-chains capture all aspects of “real life” programming
languages such as C. The variety of supported language fragments seem to contradict the assumption
that we will all converge to one comprehensive tool-chain soon. There are so many different choices
concerning memory models, non-standard control flow, and execution models that a generic framework
is desirable: in which verified compilers, deductive verification, static analysis and test techniques (such
as [10], [1]) can be developed and used inside the Isabelle platform as part of an integrated document.

In this paper we present Isabelle/C 1, a generic framework in spirit similar to Frama-C [16]. In con-
trast to the latter, Isabelle/C is deeply integrated into the Isabelle/PIDE document model [20]. Based
on the C11 standard (ISO/IEC 9899:2011), Isabelle/C parses C11 code inside a rich IDE supporting

1The current developer snapshot is provided in https://gitlri.lri.fr/ftuong/isabelle_c.

2 Deeply Integrating C11 Code Support into Isabelle/PIDE

Figure 1: A C11 Sample in Isabelle/jEdit

static scoping. SML user-programmed extensions can benefit from the parallel evaluation techniques
of Isabelle. The plug-in mechanism of Isabelle/C can integrate diverse semantic representations, in-
cluding those already made available in Isabelle/HOL [17]: AutoCorres [8], IMP2 [13], ORCA [3], or
Clean (discussed in this paper). A particular advantage of the overall approach compared to systems
like Frama-C or VCC is that all these semantic theories are conservative extensions of HOL, hence no
axiom-generators are used that produce the "background theory" and the verification conditions passed
to automated provers. Isabelle/C provides a general infrastructure for semantic annotations specific for
back-ends, i.e. modules that generate from the C source a set of definitions and derive automatically the-
orems over them. Last but not least, navigation features of annotations make the logical context explicit
in which theorems and proofs are interpreted.

The heart of Isabelle/C, the new C〈 .. 〉 command, is shown in Figure 1. Analogously to the existing
ML〈 .. 〉 command, it allows for editing C sources inside the 〈 .. 〉 brackets, where C code is parsed on
the fly in a “continuous check, continuous build” manner. A parsed source is coloured according to the
usual conventions applying for Isabelle/HOL variables and keywords. A static scoping analysis makes
the bindings inside the source explicit such that editing gestures like hovering and clicking may allow
the user to reveal the defining variable occurrences and C type information (see yellow sub-box in the
screenshot Figure 1). The C source may contain comments to set up semantic back-ends. Isabelle/C
turns out to be sufficiently efficient for C sources such as the seL4 project.

This paper proceeds as follows: in section 2, we briefly introduce Isabelle/PIDE and its document
model, into which our framework is integrated. In section 3 and section 4, we discuss the build process
and present some experimental results on the integrated parser. The handling of semantic annotations
comments — a vital part for back-end developers — is discussed in section 5, while in section 6 we
present some techniques to integrate back-ends into our framework at the hand of examples.

2 Background: PIDE and the Isabelle Document Model

The Isabelle system is based on a generic document model allowing for efficient, highly-parallelized
evaluation and checking of its document content (cf. [2, 20, 21] for the fairly innovative technologies
underlying the Isabelle architecture). These technologies allow for scaling up to fairly large documents:
we have seen documents with 150 files be loaded in about 4 min, and individual files — like the x86

F. Tuong and B. Wolff 3

model generated from Antony Fox’ L3 specs — have 80 kLoC and were loaded in about the same time.2

Editor Front-End (e.g. jEdit)

Isabelle

PIDE Scala

PIDE SML

approx. display

evaluation

edits reports

The PIDE (prover IDE) layer consists of a part written in SML and another
in Scala. Roughly speaking, PIDE implements “continuous build and continuous
check” functionality over a textual albeit generic document model. It transforms
user modifications of text elements in an instance of this model into increments
— edits — and communicates them to the Isabelle system. The latter reacts by
the creation of a multitude of light-weight reevaluation threads resulting in an
asynchronous stream of reports containing markup that is used to annotate text
elements in the editor front-end. For example, such markup is used to highlight
variables or keywords with specific colours, to hyperlink bound variables to their
defining occurrences, or to annotate type information to terms which become dis-
played by specific user gestures on demand (such as hovering). Note that PIDE is not an editor, it is the
framework that coordinates these asynchronous information streams and optimizes their evaluation to a
certain extent: outdated markup referring to modified text is dropped, and corresponding re-calculations
are oriented to the user focus, for example. For PIDE, several editor applications have been developed,
where Isabelle/jEdit (https://www.jedit.org) is the most commonly known. More experimental alterna-
tives based on Eclipse or Visual Studio Code exist.

2.1 The PIDE Document Model

A context
definition

command

command

B context
definition

command

command

command

context
definition

command

D context
definition

command

command

command

command

command

C

The document model foresees a number of atomic sub-documents
(files), which are organized in the form of an acyclic graph.
Such graphs can be grouped into sub-graphs called sessions which can be
compiled to binaries in order to avoid long compilation times — Isabelle/C
as such is a session. Sub-documents have a unique name (the mapping to
file paths in an underlying file-system is done in an integrated build manage-
ment). The primary format of atomic sub-documents is .thy (historically for
“theory”), secondary formats can be .sty, .tex, .c or other sub-documents
processed by Isabelle and listed in a configuration of the build system.

theory C_Command

imports C_Eval

keywords "C" :: thy_decl

and "C_file" :: thy_load

A .thy file consists of a context definition and a body consist-
ing of a sequence of commands. The context definition includes the
sections imports and keywords. For example our context definition
states that C_Command is the name of the sub-document depending
on C_Eval which transitively includes the parser sources as (ML
files) sub-documents, as well as the C environment and the infras-
tructure for defining C level annotations. Keywords like C or C_file must be declared before use.

For this work, it is vital that predefined commands allow for the dynamic creation of user-defined
commands similarly to the definition of new functions in a shell interpreter. Semantically, commands
are transition functions σ → σ where σ represents the system state called logical context. The logical
context in interactive provers contains — among many other things — the declarations of types, constant
symbols as well as the database with the definitions and established theorems. A command starts with
a pre-declared keyword followed by the specific syntax of this command; an evaluation of a command
parses the input till the next command, and transfers the parsed input to a transition function, which can
be configured in a late binding table. Thus, the evaluation of the generic document model allows for user
programmed extensions including IDE and document generation.

2On a modern 6-core MacBook Pro with 32Gb memory, these loading times were counted excluding proof checking.

4 Deeply Integrating C11 Code Support into Isabelle/PIDE

Note that the Isabelle platform supports multiple syntax embeddings, i.e. the possibility of nesting
different language syntaxes inside the upper command syntax, using the 〈 .. 〉 brackets (such parsing
techniques will be exploited in section 5). Accordingly, these syntactic sub-contexts may be nested. In
particular, in most of these sub-contexts, there may be a kind of semantic macro — called antiquotation
and syntactically denoted in the format @{name 〈 .. 〉} — that has access to the underlying logical con-
text. Similar to commands, user-defined antiquotations may be registered in a late-binding table. For
example, the standard term-antiquotation in ML 〈 val t = @{term "3 +"} 〉 parses the argument "3 +"

with the Isabelle/HOL term parser, attempts to construct a λ -term in the internal term representation and
to bind it to t; however, this fails (the plus operation is declared infix in logical context) and therefore
the entire command fails.

2.2 Some Basics of PIDE Programming

ML 〈 val pos = @{here};

val markup = Position.here pos;

writeln ("And a link to the declaration\

\ of 'here' is " ^ markup) 〉

A basic data-structure relevant for PIDE is positions;
beyond the usual line and column information they
can represent ranges, list of continuous ranges, and
the name of the atomic sub-document in which they
are contained. It is straightforward to use the antiquo-
tation @{here} to infer from the system lexer the actual position of the antiquotation in the global doc-
ument. The system converts the position to a markup representation (a string representation) and sends
the result via writeln to the interface.

In return, the PIDE output window shows the little
house-like symbol, which is actually hyperlinked to the po-
sition of @{here}. The ML structures Markup and Properties represent the basic libraries for annotation
data which is part of the protocol sent from Isabelle to the front-end. They are qualified as “quasi-
abstract”, which means they are intended to be an abstraction of the serialized, textual presentation of
the protocol. A markup must be tagged with a unique id; this is done by the library serial function.
Typical code for taking a string cid from the editing window, together with its position pos, and sending
a specific markup referring to this in the editing window managed by PIDE looks like this:

ML 〈 fun report_def_occur pos cid = Position.report pos (my_markup true cid (serial ()) pos) 〉

Note that my_markup (not shown here) generates the layout attributes of the link and that the true flag
is used for markup declaring cid as a defining occurrence, i.e. as target (rather than the source) in the
hyperlink animation in PIDE.

3 The C11 Parser Generation Process and Architecture

Isabelle uses basically two parsing technologies:

1. Earley parsing [7] intensively used for mixfix-syntax denoting λ -terms in mathematical notation,

2. combinator parsing [9] typically used for high-level command syntax.

Both technologies offer the dynamic extensibility necessary for Isabelle as an interactive platform
geared towards incremental development and sophisticated mathematical notations. However, since it is
our goal to support programming languages in a fast parse-check-eval cycle inside an IDE, we opt for a

F. Tuong and B. Wolff 5

grammar Haskell-Yacc

monadic parser interpreter
(ML-Yacc simulating Haskell-Yacc)

C11 .thy/.ML packages in Isabelle

parser table +
grammar rules

generate

Lexer
(written by hand) General Parser — Annotation — Eval — Command

generate

Isabelle/C C_Main.thy

AST
SML

includes

includes
SML Shift-Reduce

automata:

overloading grammar rules
(optional, mostly for PIDE report)

includes

includes

includes

includes

Isabelle/C/<semantic back-end>
back-end library back-end commands

includes

AST in Isabelle/HOL grammar ML-Yacc

C11 library in Haskell
generate generate

C11 AST in Haskell grammar Haskell-Yacc

Figure 2: The Architecture of Isabelle/C

Lex and Yacc deterministic grammar approach. It turns out the resulting automata based parser performs
well enough for our purpose; the gain in performance is discussed in the next section.

In the following, we describe a novel technique for the construction and integration of this type of
parser into the Isabelle platform. Since it is mostly relevant for integrators copying our process to similar
languages such as JavaScript or Rust 3, users of the Isabelle/C platform may skip this section: for them,
the take-home message is that the overall generation process takes about 1 hour, the compilation of the
generated files takes 15s, and that the generated files should be fairly portable to future Isabelle versions.

We base our work on the C11 parsing library http://hackage.haskell.org/package/language-c im-
plemented in Haskell by Huber, Chakravarty, Coutts and Felgenhauer; we particularly focus on its open-
source Haskell Yacc grammar as our starting point. We would like to emphasize that this is somewhat
arbitrary, our build process can be easily adapted to more recent versions when available.

The diagram in Figure 2 presents the architecture of Isabelle/C. The original Haskell library was
not modified, it is presented in blue together with generated sources, in particular the final two blue
boxes represent about 11 kLoC. In output, the glue code in brown constitutes the core implementation of
Isabelle/C, amounting to 6 kLoC (without yet considering semantic back-ends).

3.1 Generating the AST

In the following, we refer to languages by L , I . The notation ASTL
I refers to abstract syntaxes for

language L implemented in language I . For example, we refer by ASTC11
ML to an AST implementation

of C11 implemented in SML. Indices will be dropped when no confusion arises, or to highlight the fact
that our approach is sufficiently generic.

For our case, we exploit that from a given Haskell source ASTHS, Haskabelle generates to a maxi-
mum extent an Isabelle/HOL theory. Via the Isabelle code generator, an ASTML can be obtained from a

3E.g. http://hackage.haskell.org/package/language-javascript or http://hackage.haskell.org/

package/language-rust

6 Deeply Integrating C11 Code Support into Isabelle/PIDE

constructive ASTHOL representation. However, the process is challenging for technical reasons in prac-
tice due to the enormous size of ASTC11 (several hundreds of constructors), and due to certain type
declarations not initially supported by Haskabelle (we have to implement here the necessary features).
Ultimately, the process to compile ASTHS to ASTML is done only once at build time, it comprises:

1. the generation of ASTHOL from ASTHS, represented as a collection of datatype,

2. the execution of the datatype theory for ASTHOL and checking of all their proofs,4

3. the generation of an ASTML from ASTHOL.

3.2 Constructing a Lexer for C11

We decided against the option of importing the equivalent Haskell lexer, as it is coming under-developed
compared to the existing PIDE lexer library, natively supporting Unicode-like symbols (mostly for anno-
tations). Using a more expressive position data-structure, our C lexer is also compatible with the native
ML lexer regarding the handling of errors and backtracking (hence the perfect fit when nesting one lan-
guage inside the other). Overall, the modifications essentially boil down to taking an extreme care of
comments and directives which have intricate lexical conventions (see subsection 4.1).

3.3 Generating the Shift-Reduce Parser from the Grammar

In the original C11 library, together with ASTHS, there is a Yacc grammar file GHS-YACC included, which
we intend to use to conduct the C parsing. However due to technical limitations of Haskabelle (and ad-
vanced Haskell constructs in the associated GHS), we do not follow the same approach as subsection 3.1.
Instead, an ultimate grammar GML is obtained by letting ML-Yacc participate in the generation process.
In a nutshell, the overall grammar translation chain becomes: GHS-YACC −→HS GML-YACC −→ML GML.
−→HS is implemented by modifying the Haskell parser generator Happy, because Happy is already

natively supporting the whole LHS-YACC. Due to the close connection between Happy and ML-Yacc,
the translation is even almost linear. However cares must be taken while translating monadic rules 5 of
GHS-YACC, as LML-YACC does not support such rules. In GC11, monadic rules are particularly important
for scoping analyses, or while building new informative AST nodes (in contrast to disambiguating non-
monadic rules, see @ vs. & in section 5). Consequently, applying ML-Yacc −→ML on GML-YACC is not
enough: after compiling GML to an efficient Shift-Reduce automaton, we substantially modified the own
grammar interpreter of ML-Yacc to implement all features of LHS-YACC presented as used in GHS-YACC.

4 Isabelle/C: Syntax Tests and Experimental Results

The question arises, to what extent our construction provides a faithful parser for C11, and if Isabelle/C
is sufficiently stable and robust to handle real world sources. A related question is the treatment of
cpp preprocessing directives: while a minimal definition of the preprocessor is part of C standards since
C99, practical implementations vary substantially. Moreover, cpp comes close to be Turing complete:
recursive computations can be specified, but the expansion strategy bounds the number of unfolding.

4Large mutually recursive datatypes in ASTHOL might lead to worse performance time, see for instance https://

lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-March/msg00034.html and https://lists.cam.ac.uk/

pipermail/cl-isabelle-users/2017-April/msg00000.html.
5https://www.haskell.org/happy/doc/html/sec-monads.html

F. Tuong and B. Wolff 7

Therefore, a complete cpp reimplementation contradicts our objective to provide efficient IDE support
inside Isabelle. Instead, we restrict ourselves to a common subset of macro expansions and encourage,
whenever possible, Isabelle specific mechanisms such as user programmed C annotations. C sources
depending critically on a specific cpp will have to be processed outside Isabelle. 6

4.1 Preprocessing Lexical Conventions: Comments and Backslash Newlines

A very basic standard example taken from the GCC / CPP documentation 7 shows the quite intricate
mixing of comment styles that represents a challenge for our C lexer. A further complication is that it
is allowed and common practice to use backslash-newlines \ ←↩ anywhere in C sources, be it inside
comments, string denotations, or even regular C keywords like i\ ←↩ n\ ←↩ t (see also Figure 4).

In fact, many C processing tools assume that all com-
ments have already been removed via cpp before they
start any processing. However, annotations in comments
carry relevant information for back-ends as shown in sec-
tion 5. Consequently, they must be explicitly represented
in ASTC11

ML , whereas the initial ASTC11
HS is not designed to

carry such extra information. Annotations inside com-
ments may again contain structured information like pro-
gramming code, formulas, and proofs, which implies the need for nested syntax. Fortunately, Isabelle is
designed to manage multiple parsing layers with the technique of cascade sources 8 (see also Figure 3).
We exploit this infrastructure to integrate back-end specific syntax and annotation semantics based on
the parsing technologies available.

4.2 Preprocessing Side-Effects: Antiquoting Directives vs. Pure Annotations

Whereas comments can be safely removed without affecting the meaning of C code, directives are se-
mantically relevant for compilation and evaluation.

1. Classical directives: #define x TOKS makes any incoming C identifier x be replaced by some
arbitrary tokens TOKS, even when included via the #include directive.

2. Typed (pseudo-)directives as commands: It is easy to overload or implement a new #define'

acting only on a decided subset of well-formed TOKS. There are actually no differences between
Isabelle/C directives and Isabelle commands: both are internally of type σ → σ (see section 2).

3. Non-expanding annotations: Isabelle/C annotations /*@ Lannot */ or //@ Lannot can be freely in-
tertwined between other tokens, even inside directives. In contrast to (antiquoting) directives and
similarly as C comments, their designed intent is to not modify the surrounding parsing code.

A limitation of Isabelle and its current document model is that there is no way for user programmed
extensions to exploit implicit dependencies between sub-documents. Thus, a sub-document referred to
via #include <some_file> will not lead to a reevaluation of a C〈 .. 〉 command whenever modified.
(The only workaround is to open all transitively required sub-documents by hand.)

6Isabelle/C has a particular option to activate (or not) an automated call to cpp before any in-depth treatment.
7https://gcc.gnu.org/onlinedocs/cpp/Initial-processing.html
8http://isabelle.in.tum.de/repos/isabelle/file/83774d669b51/src/Pure/General/source.ML

8 Deeply Integrating C11 Code Support into Isabelle/PIDE

4.3 A Validation via the seL4 Test Suite

The AutoCorres environment contains a C99 parser developed by Michael Norrish [12]. Besides a parser
test-suite, there is the entire seL4 codebase (written in C99) which has been used for the code verification
part of the seL4 project. While the parser in itself represents a component belonging to the trusted base
of the environment, it is arguably the most tested parser for a semantically well-understood translation in
a proof environment today.

It is therefore a valuable reference for a comparison test, especially since ASTC99 and ASTC11 are
available in the same implementation language. From ASTC11

HOL to ASTC99
HOL we construct an abstraction

function C↓. A detailed description of C↓ is out of the scope of this paper; we would like to mention
that it was 4 man-months of work due to the richness of ASTC11. As such, the abstraction function C↓

is at the heart of the AutoCorres integration into our framework described in subsection 6.2. Note that
ASTC99 seems to be already an abstraction compared to the C99 standard. This gives rise to a particular
testing methodology: we can compile the test suites as well as the seL4 source files by both ML parsers
PARSEC99

stop and PARSEC11
report, abstract the output of the latter via C↓ and compare the results.

Our test establishes that both parsers agree on the entire seL4 codebase. However trying to compare
the two parsers using other criteria is not possible, for example we had to limit ourselves to C programs
written in a subset of C99. Fundamentally, the two parsers are achieving different tasks: the one of
PARSEstop is to just return a parsed AST. In contrast, PARSEreport intends to maximize markup reporting,
irrespective of a final parsing success or failure, and reports are provided in parallel during its (monadic)
parsing activity. Thus, in the former scenario, the full micro-kernel written in 26 kLoC can be parsed
in 0.1s. In the latter, all reports we have thought helpful to implement are totally rendered before 20s.
Applying C↓ takes 0.02 seconds, so our PARSEreport gives an average of 2s for a 2-3 kLoC source. By
interweaving a source with proofs referring to the code elements, the responsiveness of PIDE should
therefore be largely sufficient.

5 Generic Semantic Annotations for C

With respect to interaction with the underlying proof-engine, there are essentially two lines of thought in
the field of deductive verification techniques:

1. either programs and specifications — i.e. the pre- and post-condition contracts — are clearly
separated, or

2. the program is annotated with the specification, typically by using some form of formal comment.

Of course, it is possible to inject the essence of annotated specifications directly into proofs, e.g. by
instantiating the while rule of the Hoare calculus by the needed invariant inside the proof script. The
resulting clear separation of programs from proofs may be required by organisational structures in devel-
opment projects. However, in many cases, modelling information may be interesting for programmers,
too. Thus, having pre- and post-conditions locally in the source close to its point of relevance increases its
maintainability. It became therefore common practice to design languages with annotations, i.e. struc-
tured comments inside a programming source. Examples are ACSL standardized by ANSI/ISO (see
https://frama-c.com/download/acsl.pdf) or UML/OCL [5] for static analysis tools. Isabelle/C supports
both the inject-into-proof style and annotate-the-source style in its document model; while the former is
kind of the default, we address in this section the necessary technical infrastructure for the latter.

F. Tuong and B. Wolff 9

Figure 3: Advanced Annotation Programming

Generally speaking, a generic annotation mechanism which is sufficiently expressive to capture id-
ioms used in, e.g., Frama-C, Why3, or VCC is more problematic than one might think. Consider this:

for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

To which part of the AST does the annotation refer? To i? a*i? The assignment? The loop? Some
verification tools use prefix annotations (as in Why3 for procedure contracts), others even a kind of
parenthesis of the form:

/*@ annotation_begin */ ... /*@ annotation_end */

The matter gets harder since the C environment — a table mapping C identifiers to their type and status —
changes according to the reference point in the AST. This means that the context relevant to type-check
an annotation such as /*@ assert 〈a > i 〉 */ strongly differs depending on the annotation’s position.
And the matter gets even further complicated since Isabelle/C lives inside a proof environment; here,
local theory development (rather than bold ad-hoc axiomatizations) is a major concern.

The desire for fast impact analysis re-
sulting from changes may inspire one to an-
notate local proofs near directives, which
is actually what is implemented in our Is-
abelle/C/AutoCorres example (section 6).
In the example, the semantic back-end converts the cpp macro into a HOL definition, i.e. an extension of
the underlying theory context by the conservative axiom SQRT_UINT_MAX ≡ 65536 bound to the name
SQRT_UINT_MAX_def. This information is used in the subsequent proof establishing a new theory context
containing the lemma uint_max_factor configured to be used as rewrite rule whenever possible in fu-
ture proofs. This local lemma establishes a relation of SQRT_UINT_MAX to the maximally representable
number UINT_MAX for an unsigned integer according to the underlying memory model.

Obviously, the scheduling of these transformations of the underlying theory contexts is non-trivial.

5.1 Navigation for Annotation Commands

In order to overcome the problem of syntactic ambiguity of annotations, we slightly refine the syntax of
semantic annotations by the concept of a navigation expression:

Lannot = ∅ | <navigation-expr> <annotation-command> Lannot

A <navigation-expr> string consists of a sequence of + symbols followed by a sequence consisting
of @ or & symbols. It allows for navigating in the syntactic context, by advancing tokens with several +,
or taking an ancestor AST node with several @ (or & which only targets monadic grammar rules). This

10 Deeply Integrating C11 Code Support into Isabelle/PIDE

corresponds to a combination of right-movements in the AST, and respectively parent-movements. This
way, the “focus” of an <annotation-command> can be modified to denote any C fragment of interest.

As a relevant example for debugging, consider Figure 3. The annotation command highlight is a
predefined Isabelle/C ML-library function that is interpreted as C annotation. Its code is implicitly
parameterized by the syntactical context, represented by stack_top whose type is a subset of ASTC11,
and the lexical environment env containing the lexical class of identifiers, scopes, positions and serials
for markup. The navigation string before highlight particularly influences which stack_top value gets
ultimately selected. The third screenshot in Figure 3 demonstrates the influence of the static environment:
an Isabelle/C predefined command 'setup allows for “recursively” calling the C environment itself. This
results in the export of definitions in the surrounding logical context, where the propagation effect may be
controlled with options like C_starting_env. 'setup actually mimics standard Isabelle setup command,
but extends it by stack_top and env 9. In the example, the first recursive call uses env allowing it to
detect that b is a local parameter, while the second ignores it which results in a treatment as a free global
variable. Note that bound global variables are not green but depicted in black.

5.2 Defining Annotation Commands

Extending the default configuration of commands, text and code antiquotations from the Isabelle platform
to Isabelle/C is straightforward. For example, the central Isabelle command definition:

Outer_Syntax.command: Kcmd -> (σ -> σ) parser -> unit

establishes the dynamic binding between a command keyword Kcmd = definition|lemma| . . . and a parser,
whose value is a system transition.10 The parser type stems from the aforementioned parser combinator
library: 'a parser = Token.T list -> 'a * Token.T list.

Analogously, Isabelle/C provides an internal late-binding table for annotation commands:

C_Annotation.command : Kcmd -> (<navigation-expr> -> Rcmd c_parser) -> unit

C_Annotation.command': Kcmd -> (<navigation-expr> -> Rcmd c_parser) -> σ -> σ
C_Token.syntax': 'a parser -> 'a c_parser

where in this paper we define Rcmd = σ -> σ as above.11 Since the type c_parser is isomorphic to
parser, but accepting C tokens, one can use C_Token.syntax' to translate and carry the default Isar
commands inside the C〈 .. 〉 scope, such as lemma or by. Using 'setup, one can even define an annota-
tion command C taking a C code as argument, as the ML code of 'setup has type αAST -> env -> Rcmd

(which is enough for calling C_Annotation.command' in the ML code). Here, whereas the type env is
always the same, the type αAST ⊆ ASTC11 varies depending on <navigation-expr> (see subsection 5.3).

Note, however, that the user experience of the IDE changes when nesting commands too deeply.
In terms of error handling and failure treatment, there are some noteworthy implementation differences
between the outermost commands and C annotation commands. Naturally, the PIDE toplevel has been
optimized to maximize the error recovery and parallel execution. Inside a command, the possibilities to
mimic this behaviour are somewhat limited. As a workaround useful during development and debugging,
we offer a further pragma for a global annotation, namely * (in complement to the violet @), that controls
a switch between a strict and a permissive error handling for nested annotation commands.

9cf. https://isabelle.in.tum.de/doc/isar-ref.pdf
10σ has actually the internal Isabelle type Toplevel.transition.
11In some parallel work, we focus on running commands in native efficient speed with Rcmd = (Kcmd*(σ->σ))list. [19]

F. Tuong and B. Wolff 11

5.3 Evaluation Order

We will now explain why positional languages are affecting the evaluation time of annotation commands
in Figure 3. This requires a little zoom on how the parsing is actually executed.

The LALR parsing of our implemented C11 parser can be summarized as a sequence of alternations
between Shift and Reduce actions. By definition of LALR, whereas a unique Shift action is performed
for each C token read from left to right, some unlimited number of Reduce actions are happening between
two Shifts. Internally, the parser manages a stack-like data-structure called αAST list representing all
already encountered Shift and Reduce actions (SR). A given αAST list can be seen as a forest of SR
nodes: all leafs are tagged with a Shift, and any other parent node is a Reduce node. After a certain point
in the parsing history, the top stack element αAST (cast with the right type) is returned to 'setup.

Since a SR-forest is a list of SR-trees, it is possible to go forward and backward at will in the actually
unparsed SR-history, and execute a sequence of SR parsing steps only when needed. While every anno-
tation command like 'setup is by default attached to a closest previous Shift leaf, navigation expressions
modify the attached node, making the presentation of αAST referring to another term focus.

Instead of visiting the AST in
the default bottom-up direction dur-
ing parsing, it is possible to store the
intermediate results, so that it can be
revisited by using another direction
strategy, for example top-down after
parsing (where a parent node is executed before any of its children, and knows how they have been
parsed thanks to αAST). This enables commands to decide if they want to be executed during parsing, or
after the full AST has been built. This gives rise to the implementation of different versions of annotation
commands that are executed at different moments, relative to the parsing process. For example, the anno-
tation command 'setup has been defined for being executed at bottom-up time, whereas the execution of
the variant 'setup⇓ happens at top-down time. In the above example, C1 is a new command defined by
C_def, a shorthand antiquotation for C_Annotation.command'. Since C1 is meant to be executed during
bottom-up time (during parsing), it is executed before C2 is defined (which is directly after parsing).

Note that the C11 grammar has enough scoping structure for the full inference of the C environment
env be at bottom-up time. In terms of efficiency, we use specific static rule wrappers having the potential
of overloading default grammar rules (see Figure 2), to assign a wrapper to be always executed as soon
as a Shift-Reduce rule node of interest is encountered. The advantage of this construction is that the
wrappers are statically compiled, which results in a very efficient reporting of C type information.

6 Semantic Back-Ends

In this section, we briefly present two integrations of verification back-ends for C. We chose Clean
used for program-based test generation [10], and AutoCorres [8], arguably the most developed deductive
verification environment for machine-oriented C available at present.

Note that we were focusing on keeping modifications of integrated components minimal, particularly
for the case of AutoCorres. Certain functionalities like position propagation of HOL terms in annotations,
or “automatic” incremental declarations 12 may require internal revisions on the back-end side. This is
out of the scope of this paper.

12https://github.com/seL4/l4v/blob/master/tools/autocorres/tests/examples/Incremental.thy

12 Deeply Integrating C11 Code Support into Isabelle/PIDE

6.1 A Simple Typed Memory Model: Clean

Clean (pronounced as: “Céline” [selin]) is based on a simple, shallow-style execution model for an im-
perative target language. It is based on a “no-frills” state-exception monad type_synonym ('o, 'σ)
MON SE = 〈'σ ⇀ ('o × 'σ) 〉 with the usual definitions of bind and unit. In this language, sequence
operators, conditionals and loops can be integrated. From a concrete program, the underlying state 'σ is
constructed by a sequence of extensible record definitions:

1. Initially, an internal control state is defined to give semantics to break and return statements:

record control_state = break_val :: bool return_val :: bool

control_state represents the σ0 state.

2. Any global variable definition block with definitions a1 : τ1 . . . an : τn is translated into a record
extension:

record σn+1 = σn + a1 :: τ1; ... ; an :: τn

3. Any local variable definition block (as part of a procedure declaration) with definitions a1 : τ1 . . .
an : τn is translated into the record extension:

record σn+1 = σn + a1 :: τ1 list; ... ; an :: τn list; result :: τresult−type list;

where the list -lifting is used to model a stack of local variable instances in case of direct recur-
sions and the result used for the value of the return statement.

The record package creates an 'σ extensible record type 'σ control_state_ext where the 'σ
stands for extensions that were subsequently “stuffed” in them. Furthermore, it generates definitions for
the constructor, accessor and update functions and automatically derives a number of theorems over them
(e.g., “updates on different fields commute”, “accessors on a record are surjective”, “accessors yield the
value of the last update”). The collection of these theorems constitutes the memory model of Clean.
This model might be wrong in the sense that it does not reflect the operational behaviour of a particular
compiler, however, it is by construction logically consistent since it is impossible to derive falsity from
the entire set of rules.

On this basis, assignments,
conditionals and loops are re-
formulated into break -aware and
return -aware versions as shown
in the figure aside. The Clean
theory contains about 600 de-
rived theorems containing sym-
bolic evaluation and Hoare-style
verification rules.

Importing Clean into a theory
with its activated back-end proceeds as in Figure 4. Clean generates for the C program a common type
for the state, based on two generated extensible records — in the figure: just a global variable k and a
local variable with a stack of result values for primeC. Clean maps machine integers simply and naively
on the HOL type int. The core of this program is represented by two generated definitions available
subsequently in the logical context, where they are ready to be used in symbolic executions or proofs.

F. Tuong and B. Wolff 13

primeC_core_def: "primeC_core n ≡
ifClean 〈(n < 2) 〉then return 0 else skip;-
〈 i := 2 〉;-

whileClean 〈i < SQRT_UINT_MAX ∧ i * i ≤ n〉

(ifClean 〈n mod i = 0〉

then return 0 else skip;
〈k:=k+1〉; assert 〈 k≤UINT_MAX 〉

〈i:=i+1〉; assert 〈 i≤UINT_MAX 〉) ;-

return 1"

primeC_def: "primeC n ≡
blockClean push_local_primeC_state

(is_prime_core n)

pop_local_primeC_state"

Figure 4: Isabelle/C/Clean Semantic Back-End on an Example

Generated definitions include push and pop operations for local variable blocks, for the entire variable
space of procedures. Additionally, a specific syntax is introduced to represent assignments on global and
local variables. For example, i := 2 internally rewrites to assign (λσ. ((i_upd o map_hd) (λ_.
2)) σ). The return operation is syntactically equivalent to the assignment of the result variable in the
local state (stack) and sets the return_val flag. On this representation of the C program, the HOL term
primeC n can be decomposed into program test-cases according to a well-established coverage criterion.
Technically, this is done by a variant of the program-based testing method

apply (branch_and_loop_coverage "Suc (Suc (Suc 0))")

developed in [10], which also uses Clean as semantic basis. Note that the testing approach does not need
the formulation of an invariant, which is already non-trivial in the given example.

Finally, we will have a glance at the code for the reg-
istration of the annotation commands used in the example.
Thanks to Isabelle/C’s function C_Annotation.command',
the registration of user-defined annotations is very similar
to the registration of ordinary commands in the Isabelle plat-
form.

6.2 The Case of AutoCorres

The AutoCorres environment consists of a C99 parser, compiling to a deepish embedding of a generic
imperative core programming language, over a refined machine word oriented memory model, and a
translator of this presentation into a shallow language based on another Monad for non-deterministic
computations. This translator has been described in [8, 22] in detail. However, the original use of
AutoCorres implies a number of protocol rules to follow, and is only loosely integrated into the Isabelle
document model, which complicates the workflow substantially.

14 Deeply Integrating C11 Code Support into Isabelle/PIDE

...

...

Our running example primeC for Isabelle/C/Au-
toCorres basically differs in what the theory is im-
porting in its header. Similarly to Clean, AutoCorres
constructs a memory model and represents the pro-
gram as a monadic operation on it. Actually, it gen-
erates even two presentations, one on a very precise
word-level memory model taking aspects of the un-
derlying processor architecture into account, and an-
other one more abstract, then it automatically proves
the correspondence in our concrete example. Both
representations become the definitions primeC_def

and primeC'_def. A Hoare-calculus plus a derived
verification generator wp from the AutoCorres pack-
age leverage finally the correctness proof.

Note that the integration of AutoCorres crucially depends on the conversion ASTC11 ⇒ ASTC99 of
C↓ discussed in subsection 4.3. In particular, for the overall seL4 annotations INVARIANT, INV, FNSPEC,
RELSPEC, MODIFIES, DONT_TRANSLATE, AUXUPD, GHOSTUPD, SPEC, END-SPEC, CALLS, and OWNED_BY, we
have extended our implementation of C↓ in such a way that the conversion places the information at the
right position in the target AST. Obviously, this works even when navigation is used, as in Figure 3 left.

7 Conclusions

We presented Isabelle/C a novel, generic front-end for a deep integration of C11 code into the Is-
abelle/PIDE framework. Based on open-source Lex and Yacc style grammars, we presented a build
process that constructs key components for this front-end: the lexer, the parser, and a framework for
user-defined annotations including user-defined annotation commands. While the generation process is
relatively long, the generated complete library can be loaded in a few seconds constructing an environ-
ment similar to the usual ML environment for Isabelle itself. 20 kLoC large C sources can be parsed and
decorated in PIDE within seconds.

Our framework allows for the deep integration of the C source into a global document model in which
literate programming style documentation, modelling as well as static program analysis and verification
co-exist. In particular, information from the different tools realized as plugin in the Isabelle platform
can flow freely, but based on a clean management of their semantic context and within a framework
based on conservative theory development. This substantially increases the development agility of such
type of sources and may be attractive to conventional developers, in particular when targeting formal
certification [4].

Isabelle/C also forms a basis for future semantically well-understood combinations of back-ends
based on different semantic interpretations: inside Isabelle, bridge lemmas can be derived that describe
the precise conditions under which results from one back-end can be re-interpreted and used in another.
Future tactic processes based on these bridge lemmas may open up novel ways for semantically safe tool
combinations.

Acknowledgments. The authors warmly thank David Sanán and Yang Liu for encouraging the devel-
opment and reuse of C↓, initially started in the Securify project [18] (http://securify.sce.ntu.edu.sg/).

F. Tuong and B. Wolff 15

References

[1] Romain Aïssat, Frédéric Voisin & Burkhart Wolff (2016): Infeasible Paths Elimination by Symbolic
Execution Techniques - Proof of Correctness and Preservation of Paths. In: Interactive Theorem
Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Proceed-
ings, pp. 36–51. https://doi.org/10.1007/978-3-319-43144-4_3.

[2] Bruno Barras, Lourdes Del Carmen González-Huesca, Hugo Herbelin, Yann Régis-Gianas, Enrico
Tassi, Makarius Wenzel & Burkhart Wolff (2013): Pervasive Parallelism in Highly-Trustable In-
teractive Theorem Proving Systems. In Jacques Carette, David Aspinall, Christoph Lange, Petr
Sojka & Wolfgang Windsteiger, editors: Intelligent Computer Mathematics - MKM, Calcule-
mus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12,
2013. Proceedings, Lecture Notes in Computer Science 7961, Springer, pp. 359–363. https:

//doi.org/10.1007/978-3-642-39320-4_29.

[3] Joshua A Bockenek, Peter Lammich, Yakoub Nemouchi & Burkhart Wolff (2018): Using Is-
abelle/UTP for the Verification of Sorting Algorithms A Case Study. https://easychair.org/

publications/preprint/CxRV. Isabelle Workshop 2018, Colocated with Interactive Theorem
Proving. As part of FLOC 2018, Oxford, GB.

[4] Achim D. Brucker, Idir Aït-Sadoune, Paolo Crisafulli & Burkhart Wolff (2018): Using the Isabelle
Ontology Framework - Linking the Formal with the Informal. In: Intelligent Computer Mathe-
matics - 11th International Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018,
Proceedings, pp. 23–38. https://doi.org/10.1007/978-3-319-96812-4_3.

[5] Achim D. Brucker, Frédéric Tuong & Burkhart Wolff (2014): Featherweight OCL: A Proposal
for a Machine-Checked Formal Semantics for OCL 2.5. Archive of Formal Proofs 2014. https:

//www.isa-afp.org/entries/Featherweight_OCL.shtml.

[6] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas
Santen, Wolfram Schulte & Stephan Tobies (2009): VCC: A Practical System for Verifying Con-
current C. In: Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, pp. 23–42. https://doi.org/10.

1007/978-3-642-03359-9_2.

[7] Jay Earley (1970): An Efficient Context-Free Parsing Algorithm. Commun. ACM 13(2), pp. 94–
102. https://doi.org/10.1145/362007.362035.

[8] David Greenaway, Japheth Lim, June Andronick & Gerwin Klein (2014): Don’t sweat the small
stuff: formal verification of C code without the pain. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 -
11, 2014, pp. 429–439. http://doi.acm.org/10.1145/2594291.2594296.

[9] Graham Hutton (1992): Higher-Order Functions for Parsing. J. Funct. Program. 2(3), pp. 323–343.
https://doi.org/10.1017/S0956796800000411.

[10] Chantal Keller (2018): Tactic Program-Based Testing and Bounded Verification in Isabelle/HOL.
In: Tests and Proofs - 12th International Conference, TAP 2018, Held as Part of STAF 2018,
Toulouse, France, June 27-29, 2018, Proceedings, pp. 103–119. https://doi.org/10.1007/

978-3-319-92994-1_6.

16 Deeply Integrating C11 Code Support into Isabelle/PIDE

[11] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolan-
ski & Gernot Heiser (2014): Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), pp. 2:1–2:70. http://doi.acm.org/10.1145/2560537.

[12] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch & Simon Winwood (2009): seL4: formal verification of an OS kernel. In Jeanna Neefe
Matthews & Thomas E. Anderson, editors: Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, ACM,
pp. 207–220. https://doi.org/10.1145/1629575.1629596.

[13] Peter Lammich & Simon Wimmer (2019): IMP2 - Simple Program Verification in Isabelle/HOL.
Archive of Formal Proofs 2019. https://www.isa-afp.org/entries/IMP2.html.

[14] Dirk Leinenbach & Thomas Santen (2009): Verifying the Microsoft Hyper-V Hypervisor with VCC.
In: FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November
2-6, 2009. Proceedings, pp. 806–809. https://doi.org/10.1007/978-3-642-05089-3_51.

[15] Xavier Leroy (2009): Formal verification of a realistic compiler. Commun. ACM 52(7), pp. 107–
115. http://doi.acm.org/10.1145/1538788.1538814.

[16] CEA LIST (2019): The Frama-C Home Page. https://frama-c.com. Accessed March 24, 2019.

[17] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. Lecture Notes in Computer Science 2283, Springer. https://doi.org/
10.1007/3-540-45949-9.

[18] David Sanán, Yongwang Zhao, Zhe Hou, Fuyuan Zhang, Alwen Tiu & Yang Liu (2017): CSimpl:
A Rely-Guarantee-Based Framework for Verifying Concurrent Programs. In Axel Legay & Tiziana
Margaria, editors: Tools and Algorithms for the Construction and Analysis of Systems - 23rd In-
ternational Conference, TACAS 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part I, Lecture Notes in Computer Science 10205, pp. 481–498. https://doi.org/10.1007/

978-3-662-54577-5_28.

[19] Frédéric Tuong & Burkhart Wolff (2015): A Meta-Model for the Isabelle API. Archive of Formal
Proofs 2015. https://www.isa-afp.org/entries/Isabelle_Meta_Model.shtml.

[20] Makarius Wenzel (2014): Asynchronous User Interaction and Tool Integration in Isabelle/PIDE.
In Gerwin Klein & Ruben Gamboa, editors: Interactive Theorem Proving - 5th International Con-
ference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, Lecture Notes in Computer Science 8558, Springer, pp. 515–530.
https://doi.org/10.1007/978-3-319-08970-6_33.

[21] Makarius Wenzel (2014): System description: Isabelle/jEdit in 2014. In Christoph Benzmüller &
Bruno Woltzenlogel Paleo, editors: Proceedings Eleventh Workshop on User Interfaces for The-
orem Provers, UITP 2014, Vienna, Austria, 17th July 2014., EPTCS 167, pp. 84–94. https:

//doi.org/10.4204/EPTCS.167.10.

[22] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock & Michael Norrish
(2009): Mind the Gap. In Stefan Berghofer, Tobias Nipkow, Christian Urban & Makarius Wenzel,
editors: Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, Lecture Notes in Computer Science 5674,
Springer, pp. 500–515. https://doi.org/10.1007/978-3-642-03359-9_34.

Submitted to:
F-IDE 2019

c© P.D. Mosses
This work is licensed under the
Creative Commons Attribution License.

A Component-Based Formal Language Workbench

Peter D. Mosses
Delft University of Technology, Delft, The Netherlands

p.d.mosses@tudelft.nl

The CBS framework supports component-based specification of programming languages. It aims
to significantly reduce the effort of formal language specification, and thereby encourage language
developers to exploit formal semantics more widely. CBS provides an extensive library of reusable
language specification components, facilitating co-evolution of languages and their specifications.

After introducing CBS and its formal definition, this short paper reports work in progress on gen-
erating an IDE for CBS from the definition. It also considers the possibility of supporting component-
based language specification in other formal language workbenches.

1 Introduction

Developers of major programming languages always give formal specifications of syntax. For semantics,
however, they usually resort to informal explanations. They sometimes define the formal semantics of
sublanguages, but scaling up to full languages is usually regarded as a huge effort, and not worthwhile.

To encourage language developers to specify formal semantics of their full languages, it is essential
to reduce the effort required – not only for an initial specification, but also for co-evolution of language
specifications with the specified languages. The CBS framework aims to do just that, by providing an
extensible library of reusable language specification components. The semantics of the components is
defined once and for all, so simply translating a programming language to compositions of components
specifies the language semantics. And specifying such translations can be significantly less effort than
specifying language semantics directly.

Crucially, the definition of each component in the CBS library can be validated independently:
adding new components to the library cannot invalidate proven properties of previous components. After
a component has been validated and released, its defined behaviour cannot be changed, so each oc-
currence of a particular component name in CBS specifications refers to the same definition. When a
specified language evolves, its translation to components always has to change accordingly, as the com-
ponents themselves cannot change.

Use of CBS is supported by an IDE for editing and validating specifications of components and
languages. Validation is currently based on testing prototype implementations generated from specifi-
cations. The IDE is itself generated from a formal definition of CBS, which is specified in declarative
meta-languages provided by the Spoofax language workbench. CBS and its IDE have been developed
by the PLanCompS project.1

Here, we give a progress report on the formal definition of CBS (§3). We explain how an IDE for
CBS is generated from the definition (§4), and how editors and interpreters for programming languages
are generated from their specifications in CBS (§5). We also compare CBS with some other language
specification frameworks regarding the possibility of defining libraries of reusable components (§6).

1Programming Language Components and Specifications, http://plancomps.org.

2 A component-based formal language workbench

2 Component-based specification of programming languages

We start by briefly recalling the main features of the CBS framework for component-based specification.
For more detailed expositions, see [5, 7, 10, 15].

A CBS for a programming language is a specification of an inductively-defined translation function,
mapping well-formed program phrases to terms formed from so-called fundamental programming con-
structs (‘funcons’). The specification includes a grammar for the (concrete and abstract) syntax of the
language, and a translation equation for each alternative of the grammar. The semantics of funcons,
together with the translation of programs to funcon terms, determines the semantics of the programs.
The funcon definitions are reusable components.

PL ===============> |---------| transition

... translations | Funcons | --------------> Computations

PL ===============> |---------| rules

Funcons. A funcon usually corresponds to a simple ingredient of constructs commonly found in main-
stream programming languages. For example, an assignment in a program might be an expression,
returning either the target variable or the assigned value; the funcon for assigning a value to a variable
simply has that effect, and does not return either of its arguments. Loops in programs can often be termi-
nated abruptly by break statements; the funcons for loops simply propagate abrupt termination of their
bodies, and other funcons are used to handle abrupt termination, when needed. Funcons for integer op-
erations return the unbounded mathematical results, leaving it to other funcons to enforce boundedness.
Etc.

CBS uses a modular variant of structural operational semantics (MSOS) [9, 13] to define funcons.
Implicit propagation of unmentioned semantic entities (environments, stores, etc.) provides conciseness
as well as modularity. Funcons are defined independently of any particular programming language, and
of each other. Adding new funcons to the CBS library does not require any changes at all to previous
definitions.

Syntax. CBS includes a variant of BNF context-free grammars, extended with standard notation for
regular expressions. Concise grammars for expression syntax are usually highly ambiguous; CBS allows
disambiguation (associativity, relative priority, etc.), so the same grammar can be used for both abstract
and concrete syntax. Alternative productions for the same nonterminal are grouped together, and AST
constructors are left implicit. Lexical syntax can be context-free (e.g., for nested comments).

Translation functions. The equations used in CBS to specify translations from program ASTs to fun-
cons look like semantic equations in denotational semantics: the left side is an application of a translation
function to an AST pattern, with meta-variables matching sub-trees; the right side is a funcon term con-
taining applications of translation functions to meta-variables. The meta-variables range over specified
sorts of sub-trees. Syntactic desugaring equations relate pairs of (composite) AST patterns.

Figure 1 illustrates the notation used in CBS for specifying funcons, syntax, and translation functions.
The signature of the funcon if-true-else implies that its first argument is to be pre-evaluated; the two rules
specify its subsequent reduction to one of its two unevaluated arguments. The syntax for the sort exp
introduces Exp as the stem of meta-variables ranging over phrases of sort exp. The rule for the translation
function rval (signature omitted here) maps ASTs of expressions of the form ‘Exp1 && Exp2’ to funcon
terms formed from if-true-else, the translations of Exp1 and Exp2, and the funcon false.

P.D. Mosses 3

1. Introduction

New programming languages and domain-specific languages are continually being introduced, as are new
versions of existing languages. Each language needs to be carefully specified, to determine the syntax and
semantics of its programs. Context-free aspects of syntax are usually specified, precisely and succinctly, using
formal grammars; in contrast, semantics (including static checks and disambiguation) is generally specified
only informally, without use of precise notation. Informal specifications are often incomplete or inconsistent,
and open to misinterpretation; formal specifications can avoid such issues. Moreover, completely formal
definitions of programming languages may be used to generate prototype implementations, and as a basis
for proving properties of languages and of individual programs.

Although there is broad agreement as to the benefits of formality in language definitions, and although
there are a few examples of successful individual projects (notably the definition of Standard ML [1]),
there is generally little inclination on the part of programming language developers themselves to produce a
complete formal semantics definition. It appears that this is at least partly due to the e↵ort required when
scaling up to larger languages, and when updating a formal semantics to reflect language evolution (see, for
instance, comments by the Haskell designers [2, Page 9]).

New languages typically include a large number of constructs from previous languages, presenting a
major opportunity for reuse of specification components. However, in the absence of a suitable collection of
reusable components, each language would have to be specified from scratch—a huge e↵ort.

1.1. Component-Based Semantics

To improve the practicality of formal semantic definitions of larger languages, the PLanCompS project1

has developed a component-based approach to semantics. In this approach approach, a reusable component
of language definitions corresponds to a fundamental programming construct : a so-called ‘funcon’, which
has a fixed operational interpretation. The formal semantics of each funcon is defined independently, using
I-MSOS [3], a variant of Modular Structural Operational Semantics [4]. For example, the funcon if-true-else
is defined as follows:

Funcon if-true-else(: booleans, :)T , :)T) :)T

Rule if-true-else(true,X ,) ; X

Rule if-true-else(false, ,Y) ; Y

The collection of funcons is open-ended; crucially, adding new funcons does not require changes to the
definition or use of previous funcons.

A component-based semantics of a programming language is defined by translating its constructs to
funcons. For example, a non-strict conjunction with Boolean-valued operands could be translated as follows:

Rule rval JExp1 ‘&&’ Exp2K = if-true-else(rval JExp1K, rval JExp2K, false)

Many funcons can be widely reused in the definitions of di↵erent languages. An initial case study [5] gave
a semantics for Caml Light [6] based on a preliminary collection of funcons. The reusability of funcons
has subsequently been validated by several further case studies, some of which are available online [7],
including an update of the Caml Light specification to OCaml Light. These case studies demonstrate
how translation to funcons scales up for medium-sized languages. A further case study (C#) has been
initiated to test how well CBS can cope with a major programming language.

Analogous practices are widely adopted in software engineering: developers rely on reusable components
in the form of packages. However, applications generally rely on the details of particular versions of packages,
and problems can arise when new versions of packages are installed, requiring changes to applications that use
them. In contrast, each individual funcon definition is fixed, and language definitions require changes only
when the language itself evolves. For example, the above translation of the expression “Exp1 ‘&&’ Exp2”

1http://plancomps.org

2

1. Introduction

New programming languages and domain-specific languages are continually being introduced, as are new
versions of existing languages. Each language needs to be carefully specified, to determine the syntax and
semantics of its programs. Context-free aspects of syntax are usually specified, precisely and succinctly, using
formal grammars; in contrast, semantics (including static checks and disambiguation) is generally specified
only informally, without use of precise notation. Informal specifications are often incomplete or inconsistent,
and open to misinterpretation; formal specifications can avoid such issues. Moreover, completely formal
definitions of programming languages may be used to generate prototype implementations, and as a basis
for proving properties of languages and of individual programs.

Although there is broad agreement as to the benefits of formality in language definitions, and although
there are a few examples of successful individual projects (notably the definition of Standard ML [1]),
there is generally little inclination on the part of programming language developers themselves to produce a
complete formal semantics definition. It appears that this is at least partly due to the e↵ort required when
scaling up to larger languages, and when updating a formal semantics to reflect language evolution (see, for
instance, comments by the Haskell designers [2, Page 9]).

New languages typically include a large number of constructs from previous languages, presenting a
major opportunity for reuse of specification components. However, in the absence of a suitable collection of
reusable components, each language would have to be specified from scratch—a huge e↵ort.

1.1. Component-Based Semantics

To improve the practicality of formal semantic definitions of larger languages, the PLanCompS project1

has developed a component-based approach to semantics. In this approach approach, a reusable component
of language definitions corresponds to a fundamental programming construct : a so-called ‘funcon’, which
has a fixed operational interpretation. The formal semantics of each funcon is defined independently, using
I-MSOS [3], a variant of Modular Structural Operational Semantics [4]. For example, the funcon if-true-else
is defined as follows:

Funcon if-true-else(: booleans, :)T , :)T) :)T

Rule if-true-else(true,X ,) ; X

Rule if-true-else(false, ,Y) ; Y

The collection of funcons is open-ended; crucially, adding new funcons does not require changes to the
definition or use of previous funcons.

A component-based semantics of a programming language is defined by translating its constructs to
funcons. For example, a non-strict conjunction with Boolean-valued operands could be translated as follows:

Rule rval JExp1 ‘&&’ Exp2K = if-true-else(rval JExp1K, rval JExp2K, false)

Many funcons can be widely reused in the definitions of di↵erent languages. An initial case study [5] gave
a semantics for Caml Light [6] based on a preliminary collection of funcons. The reusability of funcons
has subsequently been validated by several further case studies, some of which are available online [7],
including an update of the Caml Light specification to OCaml Light. These case studies demonstrate
how translation to funcons scales up for medium-sized languages. A further case study (C#) has been
initiated to test how well CBS can cope with a major programming language.

Analogous practices are widely adopted in software engineering: developers rely on reusable components
in the form of packages. However, applications generally rely on the details of particular versions of packages,
and problems can arise when new versions of packages are installed, requiring changes to applications that use
them. In contrast, each individual funcon definition is fixed, and language definitions require changes only
when the language itself evolves. For example, the above translation of the expression “Exp1 ‘&&’ Exp2”

1http://plancomps.org

2

on Advanced Functional Programming, Vol. 925 of Lecture Notes in Computer Science, Springer, 1995, pp. 97–136.
doi:10.1007/3-540-59451-5_4.

[36] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: 22nd Symposium on Principles of
Programming Languages, ACM, 1995, pp. 333–343. doi:10.1145/199448.199528.

[37] S. L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice Hall, 1987.
[38] O. Danvy, L. R. Nielsen, Refocusing in reduction semantics, BRICS Research Series RS-04-26, Department of Computer

Science, Aarhus University (2004).
URL http://www.brics.dk/RS/04/26/

[39] C. Bach Poulsen, Extensible transition system semantics, Ph.D. thesis, Swansea University (2016).
[40] L. T. van Binsbergen, N. Sculthorpe, Funcons values and value operations, Hackage, [Online, accessed 17th December

2018] (2018).
URL https://hackage.haskell.org/package/funcons-values-0.1.0.3

[41] L. T. van Binsbergen, N. Sculthorpe, Funcon interpreter for the SIMPLE language, Hackage, [Online, accessed 17th
December 2018] (2018).
URL https://hackage.haskell.org/package/funcons-simple-0.1.0.3

[42] The K framework, GitHub, [Online, accessed 17th December 2018] (2018).
URL https://github.com/kframework/k5

[43] H. van Antwerpen, P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A constraint language for static semantic analysis
based on scope graphs, in: 2016 Workshop on Partial Evaluation and Program Manipulation, ACM, 2016, pp. 49–60.
doi:10.1145/2847538.2847543.

[44] P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A theory of name resolution, in: 24th European Symposium on
Programming Languages and Systems, Vol. 9032 of Lecture Notes in Computer Science, Springer, 2015, pp. 205–231.
doi:10.1007/978-3-662-46669-8_9.

Appendix A. Simple Language Definition

This appendix presents our CBS definition of the Simple language. The top-level translation function
is run. We omit the lexical grammar for the non-terminals bool, int, string and id, and the equations for
corresponding translation functions val and id, but they are available to be viewed online [7].

Appendix A.1. Values

Syntax V : value ::= bool | int | string

Semantics val J : valueK :)values

Semantics id J : idK :)ids

Appendix A.2. Expressions

Syntax Exp : exp ::= ‘(’ exp ‘)’ | value | lexp | lexp ‘=’ exp | ‘++’ lexp

| ‘�’ exp | exp ‘(’ exps? ‘)’ | ‘sizeOf’ ‘(’ exp ‘)’ | ‘read’ ‘(’ ‘)’

| exp ‘+’ exp | exp ‘�’ exp | exp ‘⇤’ exp | exp ‘/’ exp | exp ‘%’ exp

| exp ‘<’ exp | exp ‘<=’ exp | exp ‘>’ exp | exp ‘>=’ exp

| exp ‘==’ exp | exp ‘!=’ exp | ‘!’ exp | exp ‘&&’ exp | exp ‘||’ exp

Rule J‘(’ Exp ‘)’K : exp = JExpK

29

on Advanced Functional Programming, Vol. 925 of Lecture Notes in Computer Science, Springer, 1995, pp. 97–136.
doi:10.1007/3-540-59451-5_4.

[36] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: 22nd Symposium on Principles of
Programming Languages, ACM, 1995, pp. 333–343. doi:10.1145/199448.199528.

[37] S. L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice Hall, 1987.
[38] O. Danvy, L. R. Nielsen, Refocusing in reduction semantics, BRICS Research Series RS-04-26, Department of Computer

Science, Aarhus University (2004).
URL http://www.brics.dk/RS/04/26/

[39] C. Bach Poulsen, Extensible transition system semantics, Ph.D. thesis, Swansea University (2016).
[40] L. T. van Binsbergen, N. Sculthorpe, Funcons values and value operations, Hackage, [Online, accessed 17th December

2018] (2018).
URL https://hackage.haskell.org/package/funcons-values-0.1.0.3

[41] L. T. van Binsbergen, N. Sculthorpe, Funcon interpreter for the SIMPLE language, Hackage, [Online, accessed 17th
December 2018] (2018).
URL https://hackage.haskell.org/package/funcons-simple-0.1.0.3

[42] The K framework, GitHub, [Online, accessed 17th December 2018] (2018).
URL https://github.com/kframework/k5

[43] H. van Antwerpen, P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A constraint language for static semantic analysis
based on scope graphs, in: 2016 Workshop on Partial Evaluation and Program Manipulation, ACM, 2016, pp. 49–60.
doi:10.1145/2847538.2847543.

[44] P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A theory of name resolution, in: 24th European Symposium on
Programming Languages and Systems, Vol. 9032 of Lecture Notes in Computer Science, Springer, 2015, pp. 205–231.
doi:10.1007/978-3-662-46669-8_9.

Appendix A. Simple Language Definition

This appendix presents our CBS definition of the Simple language. The top-level translation function
is run. We omit the lexical grammar for the non-terminals bool, int, string and id, and the equations for
corresponding translation functions val and id, but they are available to be viewed online [7].

Appendix A.1. Values

Syntax V : value ::= bool | int | string

Semantics val J : valueK :)values

Semantics id J : idK :)ids

Appendix A.2. Expressions

Syntax Exp : exp ::= ‘(’ exp ‘)’ | value | lexp | lexp ‘=’ exp | ‘++’ lexp

| ‘�’ exp | exp ‘(’ exps? ‘)’ | ‘sizeOf’ ‘(’ exp ‘)’ | ‘read’ ‘(’ ‘)’

| exp ‘+’ exp | exp ‘�’ exp | exp ‘⇤’ exp | exp ‘/’ exp | exp ‘%’ exp

| exp ‘<’ exp | exp ‘<=’ exp | exp ‘>’ exp | exp ‘>=’ exp

| exp ‘==’ exp | exp ‘!=’ exp | ‘!’ exp | exp ‘&&’ exp | exp ‘||’ exp

Rule J‘(’ Exp ‘)’K : exp = JExpK

29

Figure 1: A funcon, and fragments of a language specification using it [5]

3 Definition of the CBS meta-language

Syntax. We use SDF3 [20] to define the context-free syntax of CBS. In SDF3, the alternative forms
for each sort of CBS construct are written as separate productions, as illustrated in Fig. 2. The form
of lexical productions is illustrated in Fig. 3. SDF3 disambiguation includes associativity and relative
priority specification for context-free syntax, and rejections and follow-restrictions for lexical syntax.

CBS-RULE.sdf3

module CBS-RULE

imports
CBS-PHRASE
CBS-TERM
CBS-LEX

// Rules:

context-free syntax
 RULE.RuleAxiom =
 CONCLUSION
 RULE.RuleInference =
 PREMISE* INFER CONCLUSION
 RULE.RuleDesugar =
 PHRASE-PATT ":" PHRASE-TYPE "=" PHRASE-TERM
 RULE.RuleSemantic =
 SEM-NAME PHRASE-PATT TERM? "=" TERMS

// Premise and conclusion formulae:

//FORMULA.FormulaDynamic = CONTEXT? STATE DYNAMIC STATE
 CONCLUSION.FormulaDynamic =

CONTEXT? STATE DYNAMIC STATE
 PREMISE.FormulaDynamic =

CONTEXT? STATE DYNAMIC STATE
//FORMULA.FormulaTyping = CONTEXT? STATE ":" TERM
 CONCLUSION.FormulaTyping =

CONTEXT? STATE ":" TERM
 PREMISE.FormulaTyping =

CONTEXT? STATE ":" TERM
//FORMULA.FormulaStatic = CONTEXT? STATE ":" TERM STATIC STATE
 CONCLUSION.FormulaStatic =

CONTEXT? STATE ":" TERM STATIC STATE
 PREMISE.FormulaStatic =

CONTEXT? STATE ":" TERM STATIC STATE
//FORMULA.FormulaRewrite = TERM "~>" TERM
 CONCLUSION.FormulaRewrite =

TERM "~>" TERM
 PREMISE.FormulaRewrite =

TERM "~>" TERM
//FORMULA.FormulaEquality = TERM "==" TERM
 PREMISE.FormulaEquality =
 TERM "==" TERM
//FORMULA.FormulaInequality = TERM "=/=" TERM
 PREMISE.FormulaInequality =
 TERM "=/=" TERM

Page 1

Figure 2: Illustrating context-free syntax of CBS [14, CBS/syntax/CBS-RULE]CBS-LEX.sdf3

module CBS-LEX

// Lexical symbols:

lexical syntax
 VAR-STEM = [A-Z] [a-zA-Z]* ([\-] [a-zA-Z]+)* ([\-] [0-9])?
 VAR-STEM = KEYWORD {reject}

 SUFFIX = [0-9]+
 SUFFIX = [\']+
 SUFFIX = ([0-9]+ [\']+)

 POSTFIX = "*"
 POSTFIX = "+"
 POSTFIX = "?"

 KIND = "Funcon"
 KIND = "Type"
 KIND = "Datatype"
 KIND = "Entity"
 KIND = "Alias"
 KIND = "Lexis"
 KIND = "Syntax"
 KIND = "Semantics"

 NAME = [a-z] [a-zA-Z0-9\-]*
 ENT-NAME = NAME
 SYN-NAME = NAME
 SEM-NAME = NAME

 ATOM = [\'] ATOM-CHAR+ [\']
 ATOM-CHAR = ~[\'\t\n\r] // \b\f?
 ATOM-CHAR = "\\'"
 ATOM-CHAR = BACKSLASH

 INT = "-"? [0-9]+

 FLOAT = "-"? [0-9]+ "." [0-9]+

 STRING = "\"" STRING-CHAR* "\""
 STRING-CHAR = ~[\"\n]
 STRING-CHAR = "\\\""
 STRING-CHAR = BACKSLASH
 BACKSLASH = "\\\\"

 KEYWORD = "Alias"
 KEYWORD = "Assert"

Page 1

CBS-LEX.sdf3

 KEYWORD = "Auxiliary"
 KEYWORD = "Built-in"
 KEYWORD = "Datatype"
 KEYWORD = "Datatypes"
 KEYWORD = "Entity"
 KEYWORD = "Entities"
 KEYWORD = "Funcon"
 KEYWORD = "Funcons"
 KEYWORD = "Hidden"
 KEYWORD = "Language"
 KEYWORD = "Lexis"
 KEYWORD = "Meta-variable"
 KEYWORD = "Meta-variables"
 KEYWORD = "Otherwise"
 KEYWORD = "Rule"
 KEYWORD = "Rules"
 KEYWORD = "SDF"
 KEYWORD = "Semantics"
 KEYWORD = "Syntax"
 KEYWORD = "Type"
 KEYWORD = "Types"

lexical restrictions

 VAR-STEM -/- [a-zA-Z\-]

 SUFFIX? -/- [0-9\']
 NAME -/- [a-zA-Z0-9\-]
 INT -/- [0-9]
 FLOAT -/- [0-9]
 BACKSLASH -/- [\"]

 "[" -/- [\[]
 "]" -/- [\]]
 "Alias"
 "Assert"
 "Auxiliary"
 "Built-in"
 "Datatype"
 "Entity"
 "Funcon"
 "Hidden"
 "Language"
 "Lexis"
 "Meta-variables"
 "Otherwise"
 "Rule"

Page 2

Figure 3: Illustrating lexical syntax of CBS [14, CBS/syntax/CBS-LEX]

The SDF3 definition of the syntax of CBS has not only a formal interpretation (based on its transfor-
mation to SDF2 and the formal definition of SDF2 [21]) but also tool support for parser generation [22],
which allows empirical validation of the grammar.

Static analysis. We have used NaBL2 [4] to define name resolution for CBS. NaBL2 rules map ASTs
to sets of constraints involving generated scope graphs. Figure 4 illustrates an NaBL2 rule that constrains
the use of variables in the premises and conclusions of CBS rules to be ‘source dependent’. Other rules
check that each funcon has a unique definition, and that all funcon names used in language specifications
are defined.

CBS-RULE.nabl2

phty <match? phrase_type
 | note $[Check syntax arg type ok for [sem_name]],
Declare[[term_q ^ (s) : _]],
Reference[[terms ^ (s) : _]],
distinct/name D(s)/Variable

| warning $[Duplicate meta-variable: [NAME]] @NAMES,
R(s)/Variable subseteq/name D(s)/Variable

| warning @NAMES.

rules

// Conclusion[[formula ^ (s, s')]] declares variables in s, references variables in s'

// Premise[[formula ^ (s, s')]] references variables in s, declares variables in s'

//FORMULA.FormulaDynamic = CONTEXT? STATE DYNAMIC STATE
 Conclusion[[FormulaDynamic(context_q, state1, dynamic, state2) ^ (s, s')]] :=

Decl[[context_q ^ (s)]],
Decl[[state1 ^ (s)]],
Conclusion[[dynamic ^ (s, s')]],
[[state2 ^ (s')]].

 Premise[[FormulaDynamic(context_q, state1, dynamic, state2) ^ (s, s')]] :=
[[context_q ^ (s)]],
[[state1 ^ (s)]],
Premise[[dynamic ^ (s, s')]],
Decl[[state2 ^ (s')]].

//FORMULA.FormulaTyping = CONTEXT? STATE ":" TERM
 Conclusion[[FormulaTyping(context_q, state, term) ^ (s, s')]] :=

Page 3

Figure 4: Illustrating name resolution of CBS [14, CBS/trans/static-semantics/CBS-RULE]

NaBL2 is not sufficiently expressive to define the full type checking of CBS, which involves struc-
tural subtyping. We have been able to define rules for arity-checking; this includes checking that partial

4 A component-based formal language workbench

funcon applications are not used as arguments unless allowed by the declared argument types. Our
NaBL2 rules also check whether the syntax patterns used in specifications of translation functions match
the specified grammar alternatives. NaBL2 is currently being superseded by a more powerful meta-
language, Statix [3], which will allow the definition of rigorous type checking for CBS.

Interpretation. The intended interpretation of funcon definitions in CBS is based on their translation
to MSOS [13], and thereby as value-computation transition systems [9]. The translation from a precursor
of CBS (MSDF) to MSOS was originally defined in Prolog [10], and validated empirically by its use in
generating prototype implementations from component-based language specifications. The CBS tool
chain now uses Haskell to translate CBS declaratively to monadic Haskell code [5]; the monads involved
correspond directly to the entities used in MSOS.

CBS uses context-free grammars (with standard notation for regular expressions) to specify the ab-
stract syntax of programming languages; the interpretation of such grammars as datatypes of ASTs is
well established. To specify concrete syntax, CBS currently allows the use of SDF3 notation [20] for
associativity, (relative) priority, and follow-restrictions. Note that the interpretation of disambiguation in
SDF3 has recently been improved [19, Ch. 2].

The equations used in CBS to specify translations of programs to funcon terms are interpreted induc-
tively as functions on ASTs, as usual.

4 Generation of the CBS IDE

The IDE for CBS is implemented in Spoofax [22], which is an Eclipse plug-in. Spoofax generates
the IDE directly from the definition of CBS: it generates a parser for CBS from its SDF3 grammar
(with automatic error recovery, and syntax highlighting); it generates name resolution and arity checking
constraints for CBS from the NaBL2 rules. Parsing and analysis errors in CBS specifications are flagged
in the Eclipse project navigator panel, and in editor windows on erroneous files.

Each language specification in CBS is a separate Eclipse project, with shared access to the funcons
library, which is stored in a remote repository. A language specification can be split into (optionally num-
bered and hierarchical) sections, and stored in any number of files. Multi-file name resolution generates
hyperlinks from names to their definitions; funcon names are global, whereas syntactic sorts, translation
functions, and meta-variables are local to the enclosing language specifications. Paths to files are never
mentioned in CBS specifications, so the distribution of items between files is irrelevant.

5 Generation of language interpreters from CBS

The CBS IDE has a menu to generate various artefacts from a language specification: a syntax-aware
editor to parse programs and translate them to funcons, a list of reused funcons, and Markdown pages
with embedded HTML for hyperlinks and highlighting. When a language specification is changed, stale
files are regenerated by clicking a menu, then the editor project is rebuilt.

The Haskell package funcon.tools [6] is used to generate Haskell code for funcon interpreters from
the CBS definitions of the funcons. The generated interpreters are highly modular [5].

GitHub generates a responsive website [17] from the generated Markdown pages, allowing language
specifications and funcon definitions to be conveniently browsed (online or offline) without installation
of Eclipse or Spoofax. Figure 5 shows a fragment of a generated web page.

P.D. Mosses 5

Semantics

		rval[[_:exp]]	:	=>values

Rule

		rval[[V]]	=	val[[V]]

Rule

		rval[[LExp]]	=	assigned(lval[[LExp]])

Rule

		rval[[LExp	'='	Exp]]	=	give(

																													rval[[Exp]],

																													sequential(

																															assign(lval[[LExp]],	given),

																															given))

Rule

		rval[['++'	LExp]]	=	give(

																										lval[[LExp]],

																										sequential(

																												assign(given,	integer-add(assigned(given),	1)),

																												assigned(given)))

Rule

		rval[['-'	Exp]]	=	integer-negate(rval[[Exp]])

Rule

		rval[[Exp	'('	Exps 	')']]	=	apply(rval[[Exp]],	tuple(rvals[[Exps]]))

Rule

		rval[['sizeOf'	'('	Exp	')']]	=	length(vector-elements(rval[[Exp]]))

Rule

		rval[['read'	'('	')']]	=	read

Rule

		rval[[Exp 	'+'	Exp]]		=	integer-add(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'-'	Exp]]		=	integer-subtract(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'*'	Exp]]		=	integer-multiply(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'/'	Exp]]		=	checked	integer-divide(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'%'	Exp]]		=	checked	integer-modulo(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'<'	Exp]]		=	is-less(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'<='	Exp]]	=	is-less-or-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'>'	Exp]]		=	is-greater(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'>='	Exp]]	=	is-greater-or-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'=='	Exp]]	=	is-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'!='	Exp]]	=	not(is-equal(rval[[Exp]],rval[[Exp]]))

Rule

		rval[['!'	Exp]]								=	not(rval[[Exp]])

Rule

		rval[[Exp 	'&&'	Exp]]	=	if-else(rval[[Exp]],rval[[Exp]],false)

Rule

		rval[[Exp 	'||'	Exp]]	=	if-else(rval[[Exp]],true,rval[[Exp]])

Funcons for concurrency are not yet available. Rule exp [[‘spawn’ Block]] = fail // FIX-ME

Syntax

		Exps	:	exps	::=	exp	(','	exps)

? ?

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

?

Semantics

		rval[[_:exp]]	:	=>values

Rule

		rval[[V]]	=	val[[V]]

Rule

		rval[[LExp]]	=	assigned(lval[[LExp]])

Rule

		rval[[LExp	'='	Exp]]	=	give(

																													rval[[Exp]],

																													sequential(

																															assign(lval[[LExp]],	given),

																															given))

Rule

		rval[['++'	LExp]]	=	give(

																										lval[[LExp]],

																										sequential(

																												assign(given,	integer-add(assigned(given),	1)),

																												assigned(given)))

Rule

		rval[['-'	Exp]]	=	integer-negate(rval[[Exp]])

Rule

		rval[[Exp	'('	Exps 	')']]	=	apply(rval[[Exp]],	tuple(rvals[[Exps]]))

Rule

		rval[['sizeOf'	'('	Exp	')']]	=	length(vector-elements(rval[[Exp]]))

Rule

		rval[['read'	'('	')']]	=	read

Rule

		rval[[Exp 	'+'	Exp]]		=	integer-add(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'-'	Exp]]		=	integer-subtract(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'*'	Exp]]		=	integer-multiply(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'/'	Exp]]		=	checked	integer-divide(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'%'	Exp]]		=	checked	integer-modulo(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'<'	Exp]]		=	is-less(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'<='	Exp]]	=	is-less-or-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'>'	Exp]]		=	is-greater(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'>='	Exp]]	=	is-greater-or-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'=='	Exp]]	=	is-equal(rval[[Exp]],rval[[Exp]])

Rule

		rval[[Exp 	'!='	Exp]]	=	not(is-equal(rval[[Exp]],rval[[Exp]]))

Rule

		rval[['!'	Exp]]								=	not(rval[[Exp]])

Rule

		rval[[Exp 	'&&'	Exp]]	=	if-else(rval[[Exp]],rval[[Exp]],false)

Rule

		rval[[Exp 	'||'	Exp]]	=	if-else(rval[[Exp]],true,rval[[Exp]])

Funcons for concurrency are not yet available. Rule exp [[‘spawn’ Block]] = fail // FIX-ME

Syntax

		Exps	:	exps	::=	exp	(','	exps)

? ?

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

?

Figure 5: A fragment of a generated web page, from [17, Languages-beta/SIMPLE]

6 Related work

CBS appears to be the only framework that currently provides a library of reusable components of pro-
gramming language specifications. Here, we consider whether similar libraries could be specified in
other frameworks. Porting the CBS funcon library to another framework is attractive, as it would make
that framework’s tool support available to CBS users.

The K-framework [18] is highly modular, and has been used to specify the semantics of several major
languages. The funcons used in the CBS specification of SIMPLE [17, Languages-beta/SIMPLE] have
already been re-specified in K, allowing the CBS of SIMPLE programs to be run with the K tools [16].
However, the specification of the K configurations was monolithic, and depended on the set of funcons.

Reduction semantics is a popular form of operational semantics, with mature tool support including
Redex [12]. Language extensions can be specified smoothly in Redex, but it is unclear how to define an
open-ended collection of funcons: reduction semantics requires grammars for evaluation contexts, and
the evaluation contexts for a particular funcon seem likely to depend on which other funcons are needed.

XASM [1] is a component-based language for Abstract State Machines [8], supporting the use of
Montages [2] for specifying programming languages. However, it appears that the original home page
(xasm.org) and the subsequent SourceForge project (xasm.sourceforge.net) are no longer in use,
and that no library of reusable XASM components has ever been released.

The Overture F-IDE platform [11] supports dialects of VDM. Those specification languages contain
many constructs which, like funcons, correspond closely to constructs of high-level programming lan-
guages: assignment statements, while-loops, exception-handling, etc. Thus translating a programming
language to a VDM dialect would be similar to specifying its CBS. It could be interesting to investigate
the possibility of defining an extensible library of funcons in VDM, with IDE support in Overture.

7 Conclusion

The syntax and static semantics of CBS have been formally defined [14] using declarative meta-languages:
SDF3 and NaBL2. The NaBL2 definition of CBS type checking needs to be reformulated in the new
Statix meta-language [3], to specify rigorous subtype checks, after which the IDE generated from the
definition of CBS is to be released as an Eclipse plugin. The responsiveness of the IDE should be signif-
icantly improved by the incremental implementation of Statix analysis.

Current examples of language specifications in CBS include OCaml-Light; scaling up to full OCaml
(and other major languages) remains to be demonstrated. Bisimulation properties of funcons can be
proved once and for all [9]; the proofs could be included with the definitions in the library.

The CBS development is part of the PLanCompS project. The project was initially supported by an
EPSRC grant (2011–16), and it is continuing as an open collaboration; new participants are welcome.

6 A component-based formal language workbench

References
[1] M. Anlauff (2000): XASM – An Extensible, Component-Based ASM Language. In: ASM 2000, LNCS 1912,

Springer, pp. 69–90, doi:10.1007/3-540-44518-8 6.
[2] M. Anlauff, P.W. Kutter & A. Pierantonio (1999): Tool Support for Language Design and Prototyping with

Montages. In: CC’99, LNCS 1575, Springer, pp. 296–299, doi:10.1007/978-3-540-49051-7 22.
[3] H. van Antwerpen, C. Bach Poulsen, A. Rouvoet & E. Visser (2018): Scopes As Types. Proc. ACM Program.

Lang. 2, pp. 114:1–114:30, doi:10.1145/3276484.
[4] H. van Antwerpen et al. (2016): A Constraint Language for Static Semantic Analysis Based on Scope Graphs.

In: Proc. PEPM 2016, ACM, pp. 49–60, doi:10.1145/2847538.2847543.
[5] L.T. van Binsbergen, P.D. Mosses & N. Sculthorpe (2019): Executable Component-Based Semantics. J. Log.

Algebr. Meth. Program. 103, pp. 184–212, doi:10.1016/j.jlamp.2018.12.004.
[6] L.T. van Binsbergen & N. Sculthorpe (2019): funcons-tools: A Modular Interpreter for Executing Funcons.

Available at https://hackage.haskell.org/package/funcons-tools. Hackage package.
[7] L.T. van Binsbergen, N. Sculthorpe & P.D. Mosses (2016): Tool Support for Component-Based Semantics.

In: Companion Proc. Modularity 2016, ACM, pp. 8–11, doi:10.1145/2892664.2893464.
[8] E. Börger (2017): The Abstract State Machines Method for Modular Design and Analysis of Programming

Languages. J. Logic Comput. 27, pp. 417–439, doi:10.1093/logcom/exu077.
[9] M. Churchill & P.D. Mosses (2013): Modular Bisimulation Theory for Computations and Values. In: FOS-

SACS 2013, LNCS 7794, Springer, pp. 97–112, doi:10.1007/978-3-642-37075-5.
[10] M. Churchill, P.D. Mosses, N. Sculthorpe & P. Torrini (2015): Reusable Components of Semantic Specifica-

tions. LNCS Trans. Aspect Oriented Softw. Dev. 12, pp. 132–179, doi:10.1007/978-3-662-46734-3 4.
[11] L.D. Couto, P. Gorm Larsen, M. Hasanagic, G. Kanakis, K. Lausdahl & P.W.V. Tran-Jørgensen (2015):

Towards Enabling Overture as a Platform for Formal Notation IDEs. In: F-IDE 2015, EPTCS 187, pp.
14–27, doi:10.4204/EPTCS.187.

[12] C. Klein et al. (2012): Run Your Research: On the Effectiveness of Lightweight Mechanization. In: POPL
2012, ACM, pp. 285–296, doi:10.1145/2103656.2103691.

[13] P.D. Mosses (2004): Modular Structural Operational Semantics. J. Log. Algebr. Program. 60-61, pp. 195–
228, doi:10.1016/j.jlap.2004.03.008.

[14] P.D. Mosses (2019): CBS IDE. Available at https://plancomps.github.io/CBS-beta/docs/

F-IDE-2019/CBS.zip. Language specification project for Spoofax-2.5.7, unreleased prototype.
[15] P.D. Mosses (2019): Software Meta-language Engineering and CBS. J. Comput. Lang. 50, pp. 39–48,

doi:10.1016/j.jvlc.2018.11.003.
[16] P.D. Mosses & F. Vesely (2014): FunKons: Component-Based Semantics in K. In: WRLA 2014, LNCS

8663, Springer, pp. 213–229, doi:10.1007/978-3-319-12904-4 12.
[17] PLanCompS Project (2019): CBS: A Framework for Component-Based Specification of Programming Lan-

guages. Available at https://plancomps.github.io/CBS-beta. Beta release.
[18] G. Rosu (2017): K: A Semantic Framework for Programming Languages and Formal Analysis Tools. In:

Dependable Software Systems Engineering, IOS Press, pp. 186–206, doi:10.3233/978-1-61499-810-5-186.
[19] L.E. de Souza Amorim (2019): Declarative Syntax Definition for Modern Language Workbenches. Ph.D.

thesis, Delft University of Technology, doi:10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f.
[20] L.E. de Souza Amorim, E. Visser & G. Wachsmuth (2014): Developing SDF3. In: Parsing@SLE 2014.

Available at https://www.sleconf.org/2014/parsing-slides/2-sdf3-slides.pdf.
[21] E. Visser (1997): Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amsterdam.
[22] E. Visser et al. (2014): A Language Designer’s Workbench: A One-Stop-Shop for Implementation and Verifi-

cation of Language Designs. In: Proc. Onward! 2014, ACM, pp. 95–111, doi:10.1145/2661136.2661149.

Submitted to:
F-IDE 2019

An Integrated Development Environment for the Prototype
Verification System

Paolo Masci
National Institute of Aerospace

Hampton, VA, USA

paolo.masci@nianet.org

César A. Muñoz
NASA

Hampton, VA, USA

cesar.a.munoz@nasa.gov

The steep learning curve of formal technologies is a well-known barrier to the adoption of formal
verification tools in industry. This paper presents VSCode-PVS, a modern integrated development
environment for the Prototype Verification System (PVS). This new environment integrates the edit-
ing and proof management functionalities of PVS in Visual Studio Code, a popular code editor widely
used by software developers. VSCode-PVS provides functionalities that developers expect to find in
modern verification tools, but are not available in the standard Emacs front-end of PVS, such as
auto-completion, point-and-click navigation of definitions, live diagnostics for errors, and literate
programming. The main features and architecture of the environment are presented, along with a
comparison with other similar tools.

1 Introduction

Early detection of design anomalies and increased confidence that the system will operate as intended
are some of the benefits of the use of formal verification technologies in industry. However, outside
safety-critical domains such as avionics, the use of verification tools is still rather limited. One of the
reasons is the steep learning curve of verification technologies, which creates an initial cost that is often
deemed excessive with respect to the long term benefits.

The work presented in this paper aims to reduce the learning curve of the Prototype Verification
System (PVS) [10], a verification tool for formal modeling and analysis of system designs. The PVS
modeling language is based on higher-order logic. It supports basic types (boolean, int, real, etc), as
well as datatypes such as string, set, list. The proof engine is based on Gentzen’s sequent calculus,
and supports the use of proof strategies for automated analysis. The verification system provides an
evaluation environment, called PVSio [8], for animation of executable specifications.

PVS is a powerful analysis tool with a long history of success stories in a range of different do-
mains [9]. PVS is widely used at NASA Langley Research Center for the analysis of algorithms and
protocols for avionics systems1. Research groups have also applied PVS to the analysis of human-
machine interfaces in medical systems [6] and for co-simulation of Cyber-Physical Systems [12] and
semi-autonomous systems [13].

Becoming fluent with PVS, however, usually requires several weeks. Common difficulties faced by
developers are often rooted in the PVS front-end:

• Conceptual gap. The PVS front-end is based on the Emacs editor. Emacs does not provide
separate visual components for editing files, executing commands, and browsing the file system.
Rather, it provides buffers, abstract entities that can be used to interact with any resource. When

1https://shemesh.larc.nasa.gov/fm/fm-main-research.html

2 An Integrated Development Environment for the Prototype Verification System

a buffer is linked to a text file, e.g., a PVS specification, Emacs acts like a code editor. When
the buffer is linked to an interactive process, e.g., the PVS theorem prover, Emacs provides a
command-line interface for sending commands to the process. Developers need to learn the set of
commands for operating with buffers, as well as to recognize the buffers — the visual appearance
of different buffers is identical to the untrained eye.

• Knowledge gap. The PVS Emacs interface favors the use of the command line integrated in
Emacs. Developers need to learn several commands and keyboard shortcuts to be fluent when
editing, parsing, and analyzing PVS specifications. Means for efficient navigation of the libraries
are not provided in PVS Emacs. This can significantly slow down the development of PVS speci-
fications and proofs. For example, the NASA PVS Library 2 includes over 100,000 theorems and
definitions useful for modeling and analysis of different aspects of safety-critical systems. Without
appropriate tool support, finding anything within these libraries is a prohibitive task.

The main contribution of this work is VSCode-PVS, a new integrated development environment
designed to reduce substantially the conceptual and knowledge gaps faced by PVS users. A preliminary
but fully functional version of the new environment is presented, along with a comparison with other
environments. The environment is publicly available at GitHub3 under NASA’s Open Source Agreement.

The rest of this paper is organized as follows. Section 2 provides background information on the
standard PVS front-end, and on Visual Studio Code. Sections 3 and 4 introduce the architecture and
main features of the environment. Section 5 identifies a set of metrics that are general across the front-
end of different modeling and analysis tools, and uses these metrics to compare VSCode-PVS to other
environments. Section 6 presents related work. Finally, Section 7 concludes the paper.

2 Background

This section provides background information on PVS Emacs, the standard front-end of PVS, and Visual
Studio Code, the baseline technology used for the development of VSCode-PVS.

2.1 PVS Emacs

PVS Emacs is a text-based environment built on the Emacs editor to support user interaction with PVS.
Commands necessary to interact with the PVS system are invoked by typing the command name and its
arguments, if any, in the Emacs minibuffer. To enter a command in the minibuffer, users need to pre-fix
the command with the key sequence M-x, where M is usually the Alt key. An example is M-x typecheck,
which executes the PVS type-checker command on the PVS file opened in the Emacs editor. Over 100
commands are provided (see [11]). Additionally, an extensive list of keyboard shortcuts is implemented
to speed up command entry. For example, type-checking can be executed by typing M-x tc in the
minibuffer, or by performing the key sequence C-c C-t, where C- is the Ctrl key.

2.2 Visual Studio Code

Visual Studio Code is a cross-platform open-source code editor created in 2015 by Microsoft. The ed-
itor provides a rich graphical user interface that integrates the essential components typically used by
programmers: a source code editor that supports auto-completion, hovers, embedded mini-editors, and

2https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
3https://github.com/nasa/vscode-pvs.

Paolo Masci & César A. Muñoz 3

contextual menus; an integrated graphical debugger, which allows the user to set break-points and per-
form step-by-step execution of source code; a tree-based view for browsing files in the file system; an
integrated terminal for executing commands; integration with source code management tools (e.g., Git).
The behavior of all these components can be extended or re-programmed to provide support for a spe-
cific programming language. The community has already created extensions for over 80 programming
languages, including C++, Java, JavaScript, and Python. Besides programming languages, there is also
a growing interest in integrating verification tools in Visual Studio Code. Examples include Dafny4 and
Lean5. Some of these extensions will be discussed further below, in Section 5.

3 VSCode-PVS

VSCode-PVS is a new integrated development environment for creating, evaluating and verifying PVS
specifications. The environment, shown in Figure 1, redefines the way developers interact with PVS,
and better aligns the PVS front-end to the functionalities provided by development environments used
by software developers. The main features provided by the environment are as follows:

• Syntax highlighting. PVS keywords and library functions are automatically highlighted.

• Autocompletion and code snippets. Tooltips suggesting function names and language keywords
are automatically presented when the user types a symbol in the editor. Code snippets are provided
for frequent modeling blocks, e.g., if-then-else.

• Hover information for symbol definitions. Hover boxes providing information about identifiers
are automatically displayed when the developer places the cursor over an identifier.

• Jump-to declaration. Navigation of symbol declarations can be performed with simple point-
and-click actions: the user places the cursor over the name of an identifier, and a click on the
name of the identifier while holding the Ctrl key down opens a window with the location where
the identifier is declared.

• Live diagnostics. Parsing is automatically performed in the background, and errors are reported
in-line in the editor. Problematic expressions are underlined with red wavy lines. Tooltips present-
ing the error details are shown when the user places the cursor over the wavy lines.

• In-line actionable commands. Actionable commands are available for PVS theorems. They are
rendered in-line in the editor, above the name of the theorem, and can be used to start a new prover
session for the theorem with a simple click action.

• Overview of PVS theories. The overall structure of a set of PVS theories is rendered using an
interactive tree-based view. It shows the set of PVS theories in the active workspace, as well as the
name and status (proved, unfinished, etc.) of the theorems defined in each theory. Point-and-click
actions can be used to jump to theory definitions and type-check the theories.

• Interactive proof tree visualizer and editor. An interactive tree-based view shows the proof
associated with a theorem. Point-and-click actions are provided for step-by-step execution of
proof commands. Functionalities for editing the proof are currently under development.

• Integrated PVS and PVSio Command Line Interfaces. Integrated command line interfaces
allow interaction with the theorem prover and the PVSio evaluator. Auto-completion is provided
for prover commands, as well as access to the commands history.

4https://github.com/DafnyVSCode/Dafny-VSCode
5https://github.com/leanprover/vscode-lean

4 An Integrated Development Environment for the Prototype Verification System

Figure 1: VSCode-PVS: (1) Main Editor; (2) Theory Explorer; (3) Proof Explorer; (4) Integrated PVS
Command Line Interface (CLI).

3.1 Architecture

The overall architecture of VSCode-PVS is depicted in Figure 2. It builds on the Language Server
Protocol (LSP), a tool-independent communication protocol for exchanging data and events between
two architectural elements: an editor front-end and a language server back-end.

The editor front-end is responsible for rendering visual feedback to the user, and transforms user
interactions with the editor into corresponding LSP events to be dispatched to the language server. The
language server defines the functions necessary to support the syntax and semantics of the language (e.g.,
in the case of PVS, parsing, typechecking, etc.) and continuously listens to LSP events. An example LSP
event is onHover. This event is triggered by the editor front-end when the user places the cursor over
an identifier in the text document. This event is sent to the language server, along with information on
the path of the text document and the location of the cursor in the document. The language server acts
upon this event, in this case, by sending the identifier’s definition back to the editor. The editor, in turn,
displays the server response to the user as a hover box. The language server can also generate events.
For example, an event sendDiagnostics, is used by the server to publish diagnostics information (e.g.,
parsing error).

The LSP protocol is extensible. It builds on Remote Procedure Calls (RPCs) and the JavaScript
Object Notation (JSON) format. It allows the definition of new event types to accommodate language-
specific features. In the case of PVS, this feature is used to implement commands necessary for interac-
tive analysis of PVS specifications, e.g., type-checking, discharging proof obligations, proving theorems,
etc. The LSP-based architecture has been chosen for the implementation of VSCode-PVS because it pro-
motes reuse of modules and facilitates sustainability of the overall development effort — LSP-compliant
editors can be connected to the Language Server back-end. All major code editors support the LSP,
which makes it relatively simple to connect the PVS language server to a different editor front-end. Fea-

Paolo Masci & César A. Muñoz 5

Figure 2: Overall architecture of VSCode-PVS.

tures implemented in the language server for standard LSP events become automatically available in the
connected editor.

3.2 The Editor Front-End

The PVS Editor front-end builds on Visual Studio Code6, an open-source code editor widely used by
software developers. The main software modules of the front-end are shown in Figure 3. They are
illustrated in the following.

Editor Extensions. These modules are used to tailor the functionalities of the textual editor provided
by Visual Studio Code to the PVS language. Functionalities implemented in these modules include:
decorators necessary for syntax highlighting; code snippets for rapid creation of PVS code blocks; code
folding; key bindings and contextual menus for PVS commands.

Explorer Extensions. These modules customize Explorer View, a graphical tree-based view integrated
in Visual Studio Code. A new module, Theory Explorer, introduces support for click-and-point naviga-
tion of PVS specifications. A second module, Proof Explorer, aims to support interactive visualization
and editing of proofs using click-and-point operations.

Integrated PVS Terminals. These modules seamlessly link the integrated terminal of Visual Studio
Code to the interactive read-eval-print loops of the PVS theorem prover and the PVSio [8] evaluator.
That is, in the prover terminal, developers can type proof commands for the theorem prover, and watch
the proof state returned by the prover directly in the terminal. Similarly, in the evaluator terminal,
developers can type ground expressions and thus execute fragments of a PVS specification.

VSCode APIs. This is a library provided by Visual Studio Code for extending and customizing the
functionalities of the editor. It includes communication primitives necessary to support the LSP.

3.3 The Language Server

The PVS Language Server includes the following modules (see Figure 4):

LSP Service Providers. These modules handle LSP events received by the language server. They
reconcile the APIs of PVS with the logic of the LSP. For example, Hover Provider, which is activated
when an onHover event is received, uses the APIs of PVS to gather the information to be shown in hover
boxes, and then sends the response to the editor front-end using the LSP format. Definition Provider
defines the logic necessary to support functions such as go-to definition and peek definition, which are
used in the editor front-end for point-and-click navigation of PVS specifications. CodeLens Provider
defines the logic behind actionable commands embedded in-line in the PVS specification — this is used

6https://code.visualstudio.com

6 An Integrated Development Environment for the Prototype Verification System

Figure 3: Inner architecture of the PVS editor front-end. Modules are represented as boxes. Communi-
cation between modules is indicated with arrows. Dashed line indicates under development.

to introduce in-line actionable prove commands at the location of theorem definitions. PVS Commands
Provider provides support for language-specific commands used for analysis of PVS specifications, e.g.,
type-check, show proof obligations, prove theorem. Diagnostics Provider is a background process that
continuously sends diagnostics information to the editor front-end to report syntax / type-checking errors.

LSP Connection Manager. This is a routing module for managing the exchange of events and data
with the client front-end. The module listens for client connections, receives LSP events from connected
clients, and dispatches the events to the appropriate service provider.

PVS Process Workers. These modules embed the functionalities of the PVS verification system in the
language server. Each worker executes a PVS instance in a self-contained execution environment. A pool
of workers supports parallel execution of multiple PVS instances — this is used for running background
services like parsing and type-checking. Furthermore, in contrast to PVS Emacs, VSCode-PVS supports
running simultaneously proofs of different formulas.

3.4 Implementation

VSCode-PVS is implemented in TypeScript7, an extension of JavaScript that supports type annotations.
Typescript programs can be statically checked for type correctness. A transpiler translates TypeScript
code into plain JavaScript, which allows the execution of TypeScript programs in standard JavaScript
engines. The editor front-end builds on the APIs of Visual Studio Code. The language server builds on
NodeJS8, a JavaScript environment that provides libraries necessary for creating web-services, including
functions for spawning processes and performing operations on file systems. Process workers use the
native Lisp interface of PVS to exchange commands and data with the PVS system. TSLint9, a static
analyzer for TypeScript, is routinely used for checking compliance with established coding conventions.

7https://www.typescriptlang.org
8https://nodejs.org
9https://palantir.github.io/tslint

Paolo Masci & César A. Muñoz 7

Figure 4: Inner architecture of the PVS Language Server.

Jasmine10 is used for testing the APIs of the developed modules.
The implementation effort to date amounts to 7K LoC (3K LoC for the editor front-end, and 4K

LoC for the language server). Most of the code developed for the editor front-end is associated with
the interactive tree-based views for visualizing theories and proofs. The server back-end required the
development of a Lisp interface to dialogue with PVS, as well as additional logic for LSP events that are
not directly supported by PVS, e.g., auto-completion for identifiers, hover information, live diagnostics.

4 Example use of VSCode-PVS

This section showcases the main features of VSCode-PVS for two representative tasks typically carried
out by PVS users. Tasks are provided in the form of short descriptions presenting the overall goal of the
task and the context within which the task is carried out. A comparison with the standard PVS Emacs
front-end is included in each task to better appreciate the improvements introduced by VSCode-PVS.

4.1 Task 1: Navigation of symbol declarations

Goal: Inspect function and type declarations from imported PVS files.

Context: When developing a new PVS specification or a new proof, users typically need to navigate
symbol declarations imported from other PVS theories. This is necessary, e.g., to inspect the structure of
complex datatypes defined in the PVS libraries.

Workflow with VSCode-PVS. The standard workflow for inspecting a symbol declaration involves
using the hover functionality (see Figure 5b). The user can place the cursor over the symbol definition,
and a tooltip will be automatically shown. The tooltip includes three main elements: a brief description of
the symbol (e.g., built-in type); a clickable link for jumping to the location of the declaration; a preview
of the symbol declaration. This standard workflow can always be adopted when a PVS specification type-
checks correctly. An alternative workflow is also available for theories that are still not type-checked,
e.g., because the user has not finished yet typing the content of the specification. In these cases, the

10https://jasmine.github.io

8 An Integrated Development Environment for the Prototype Verification System

resolution of symbol declarations can still be performed, but can be less accurate when symbol names are
overloaded. That is, when the symbol to be resolved is overloaded and the theory is not type-checked,
an array of candidate declarations is presented. In these cases, the peek declaration functionality is
employed (see Figure 5c). It opens a mini-editor and a file browser in the current editor window that can
be used to inspect the candidate declarations.

Workflow with Emacs. Symbol declarations can be inspected with the command show-declaration.
The command takes the name of the symbol as argument. The current location of the cursor can be
used to auto-complete the symbol name. The command opens a new Emacs buffer with a preview of
the declaration. The command goto-declaration can then be used to jump to the location of the
declaration. The command takes the name of the symbol as argument. When the theory is not type-
checked, a command find-declaration can be used to inspect a list of possible candidates. The
jump-to functionality is however not available in this case, and the user needs to manually open the file
(command C-c C-f followed by the filename) and scroll the text to the position of the declaration.

4.2 Task 2: Proving a theorem

Goal: Verify that a PVS specification satisfies given formal (mathematical) properties.

Context: For complex systems, it is important to analyze a system design before the actual system is
built. This helps developers gain confidence that the system design complies to given specifications, and
identify and fix potential design issues early in the development process, when the cost of design changes
is still relatively low. In safety-critical application domains, such as avionics and healthcare, such design
analysis is usually mandated by regulatory frameworks. Proving mathematical theorems that capture
properties of the intended characteristics and functionalities of the system is the core approach used in
formal methods. It provides means to check properties of a system design for all possible inputs in all
possible system states.

Workflow with VSCode-PVS. In-line actionable commands are provided next to each theorem. For
example, in Figure 1, an actionable command prove is shown in the main editor window, above the
theorem name at line 33). A click on the actionable command, triggers type-checking, and launches a
new prover sessions in the integrated PVS Command Line Interface (see Figure 1, lower-right panel).
Proof commands can be typed in the command line interface. The current proof is shown on the side,
using an interactive tree-based view, called Proof Explorer (see Figure 1, lower-left panel). Nodes in the
tree view can be collapsed/expanded to facilitate inspection of large proofs. Editing of the proof tree
from Proof Explorer is under development.

Workflow with Emacs. The user needs to type-check the file (M-x tc) and then start a theorem prover
session with the command M-x prove. The command opens a new Emacs buffer that can be used
to interact with the theorem prover. Proof commands are typed in this new buffer. A command M-x

x-show-current-proof can be used to start open a window showing the proof tree (see Figure 6d).
The proof tree cannot be edited, and it does not allow collapsing/expanding of proof branches.

5 Comparing VSCode-PVS to Other Analysis Tools

This section presents a comparison between VSCode-PVS and other similar environments. The follow-
ing verification environments are considered:

• PVS Emacs, the standard front-end of PVS;

Paolo Masci & César A. Muñoz 9

(a) Autocompletion. (b) Hover.

(c) Peek definitions.

Figure 5: Example functionalities of VSCode-PVS.

• Isabelle/jEdit [18, 19], the standard front-end of the Isabelle/HOL theorem proving system;
• SublimeHOL11, a front-end to the HOL4 theorem prover;
• CoqIDE, the default front-end of the Coq theorem proving systems;
• Proof General [1], a generic front-end for theorem provers;
• Lean [7], a new open-source theorem proving system from Microsoft;
• IntelliJ-Arend12, a new proof assistant under development at JetBrains research;
• KeYmaera-X [2], an interactive theorem prover for hybrid systems.

5.1 Metrics

A set of metrics has been defined to guide the comparison. The set of metrics is not exhaustive. Rather,
they capture core functionalities necessary to support common modeling and analysis tasks.

1. Autocompletion: ability to suggest keywords and identifiers while typing;
2. Hover information: ability to show informative pop-ups for keywords and identifiers;
3. Jump-to-definition: ability to open a file at the location of an identifier’s definition;
4. Refactoring: ability to rename identifiers;
5. Live diagnostics: ability to show diagnostics information while typing;
6. Animation: ability to evaluate executable specifications;
7. Proof visualizer: ability to visualize a proof tree.

11https://github.com/JamesShaker/SublimeHOL
12https://github.com/JetBrains/intellij-arend

10 An Integrated Development Environment for the Prototype Verification System

(a) CoqIDE: editor and side view for proof inspection. (b) Isabelle/jEdit.

(c) Lean. (d) PVS Emacs: editor and proof window.

(e) IntelliJ-Arend. (f) KeYmaera-X.

Figure 6: Screenshots of other analysis tools.

Paolo Masci & César A. Muñoz 11

5.2 Assessment

VSCode-PVS. Autocompletion is provided for language keywords, as well as for types and functions
defined in the standard PVS library (the prelude). Context-sensitive autocompletion is supported for
record types: items suggested by the editor range over record accessors (see Figure 5a). Hover infor-
mation is provided for identifiers. It shows a preview of the definition of the identifier, as well as an
hyperlink that can be used to jump-to the location of the definition (see Figure 5b). Live diagnostics
for syntax errors are automatically provided after a period of inactivity in the editor — syntax errors are
underlined with red wavy lines, and a tooltip with details on the error is provided when placing the cursor
at the error position. Integrated terminals can be used to animate specifications and prove theorems. An
interactive tree-based view allows for the visualization of proof trees and proof commands step-by-step.

PVS Emacs. The environment, shown in Figure 6d, provides syntax highlighting and a basic form of
jump-to-definition through commands and key bindings. A basic form of autocompletion is provided
for proof commands. The logic for hover information is not implemented. Diagnostics are obtained
on-demand, when the developer decides to parse or type-check the specification. Animation is provided
through an interactive read-eval-print loop. Proofs can be visualized in a tree-based view. Nodes in the
tree represent either proof sequents or proof commands. An interactive text-based view is used to show
proof tactics and allows the user to perform step-by-step execution of proof commands.

CoqIDE. The environment is shown in Figure 6a. It provides syntax highlighting. Autocompletion,
hover information, and jump-to-definition are not provided. Diagnostics are provided on-demand, when
the developer decides to attempt verification. A linear workflow is enforced: verification always starts
from the beginning of the file, and a marker is advanced in the editor to indicate what has been verified.
Everything above the marker is locked and cannot be modified. A side panel shows the proof state,
including current goal, tactic state, and error messages. Point-and-click operations allow step-by-step
execution of proof commands. The development of an alternative front-end, vscoq13, based on Visual
Studio Code was attempted in recent years. However, the implementation appear to have stopped at the
very early stages and does not provide significant new functionalities with respect to CoqIDE.

Proof General. The environment builds on Emacs, and its visual appearance is similar to PVS Emacs.
The main design goal of this environment is to facilitate the execution of proof commands and the
navigation of proof strategies. A plug-in based architecture allows the introduction of language-specific
extensions. Plug-ins for Coq and Isabelle/HOL are available. They provide syntax highlighting and
basic forms of autocompletion. Proof visualization builds on a tree-based view similar to that used in
PVS Emacs. Commands are provided for step-by-step execution of proof tactics.

SublimeHOL. The environment builds on the Sublime14 editor. It provides syntax highlighting for the
HOL4 specification language. A basic form of autocompletion is provided for keywords and mathemat-
ical symbols. Hover information, jump-to-definition and visualization of proof trees are not provided.
Interactive panels allow to exchange commands with HOL4 and edit/inspect the proof state.

Isabelle/jEdit. The environment, shown in Figure 6b builds on jEdit15. Context-sensitive autocomple-
tion is provided based on the syntax of the language, as well as on name-space information provided by
the prover engine. A dictionary-based spell-checker is used to suggest completion items for comments
and other sections in the specification that contain sentences in natural language. Hover information
shows the type of language symbols. Hover boxes can be detached from the current editor and turned

13https://github.com/siegebell/vscoq
14https://www.sublimetext.com
15http://www.jedit.org/

12 An Integrated Development Environment for the Prototype Verification System

into separate windows to facilitate navigation of file content. Live diagnostics are provided for errors
in the form of red wavy lines, along with hover information at the error location. A panel shows proof
information and allows to perform step-by-step evaluation of a proof method. A query panel enables the
filtering of information displayed for the proof state. A basic form of model animation can be achieved
through Isabelle’s counter-example finding functionality.

Lean. The environment is shown in Figure 6c. It builds on Visual Studio Code. Because of this, its
overall visual appearance is similar to VSCode-PVS. Context-sensitive autocompletion is provided for
language symbols. A reasoning engine is always active in the background and tries to autocomplete
expressions based on context information, in a manner similar to the hole functionality provided in
Haskell. Hover information shows the definition of identifiers. Navigation of definitions is supported
by the jump-to functionality and mini-editors rendered in line in the current editor. Live diagnostics are
provided for errors, in the usual form of red wavy lines at the location of the error, and a tooltip with
information about the error. Proof commands are embedded in the specification and can be activated
with point-and-click operations. Similarly to Coq and jEdit, the proof state is shown in a side panel.

IntelliJ-Arend. The environment builds on IntelliJ IDEA16. Autocompletion is provided for keywords
and identifiers. An auto import function is available that automatically imports library modules. Hover
information is used to present a description in natural language of identifiers, as well as a link to the
definition of the identifier (see Figure 6e). Refactoring allows to rename identifiers, and move definitions
across modules. Live diagnostics are presented for syntax errors. Additional diagnostics can be obtained
on-demand by type-checking the specification. Animation and proof visualization are not available.

KeYmaera-X. The environment is the successor of the KeYmaera IDE [16]. Web-based technologies
are used to implement the front-end (see Figure 6f). The main focus is on proof development. Only basic
functionalities are provided to support modeling tasks: syntax highlighting is provided only for language
keywords; hover information, jump-to definition and refactoring are not available. The prover interface
renders proofs in sequent form, with horizontal lines as in the Gentzen-style layout. An extensive set of
menus provides access to all proof commands. Heuristics are used to suggest proof tactics.

5.3 Results

An overview of the comparison is in Table 1. It can be seen that VSCode-PVS already provides several
features that other similar environment are still missing. Most of the environments are mainly designed
to provide an interface for exchanging proof commands with the theorem prover. Few environments
provide adequate support for modeling activities. For example, almost all environments currently lack
refactoring, and developers need to rely on search-and-replace functionalities of the editor when renam-
ing identifiers. However, this solution is not robust, as careful inspection is necessary for overloaded
identifiers. Two other important features commonly used during modeling activities are also missing in
most of the environments: animation of executable fragments and live diagnostics. Animation provides a
means to developers to test a specification, e.g., to check whether it correctly captures what the developer
wants to model. This functionality can be especially useful to software engineers that approach formal
verification, as it is congruent with the testing methods they routinely use for software. It also provides a
form a lightweight formal verification — properties can be checked for specific execution traces prior to
running the full formal proof. Live diagnostics promote immediate identification of specification errors.
This may facilitate understanding and resolution of errors, as a developer’s focus of attention is already
at the location of the error.

16https://www.jetbrains.com/idea/

Paolo Masci & César A. Muñoz 13

V
er

si
on

B
as

e
ed

ito
r

A
ut

oc
om

pl
et

io
n

H
ov

er
in

fo
rm

at
io

n

Ju
m

p-
to

-d
efi

ni
tio

n

R
ef

ac
to

ri
ng

L
iv

e
di

ag
no

st
ic

s

A
ni

m
at

io
n

Pr
oo

fv
is

ua
liz

er

VSCode-PVS 1.0.12 VSCode

PVS-Emacs 6.0 Emacs

CoqIDE 8.9.0 N/A

SublimeHOL 2018 Sublime

Proof General 4.5 Emacs, Eclipse

Isabelle/jEdit 2019 jEdit

Lean 0.14.1 VSCode

IntelliJ-Arend 1.0.0 IntelliJ IDEA

KeYmaeraX 4.6.3 N/A

Table 1: Overview of the comparison results. The following symbols summarize the characteristics of a
feature: fully implemented (); basic implementation (); planned feature (); not available ().

6 Related Work

VSCode-PVS aims to align the functionalities of the PVS front-end to those of program analyzers such
as Dafny [3], or reasoning engines like Imandra [14]. The front-end of these tools provides all function-
alities typically available in modern IDEs for programming languages, including context-aware help and
an integrated debugger. Verification is carried out in the background, by continuously querying a pool of
solvers while the user types the code. Design solutions are adopted to keep the interface responsive and
provide an overall smooth programming experience to the user.

The verification technology used by VSCode-PVS is not automatic, as in the case of Dafny and
Imandra. However, when the PVS analysis targets routine tasks such as discharging proof obligations
necessary to prove type correctness, automatic analysis is usually feasible thanks to the powerful proof
strategies provided by PVS. This opportunity needs to be exploited, as it would allow the completion of
simple but time-consuming activities that developers need to carry out while creating a formal specifica-
tion. Appropriate mechanisms need to be developed to limit the use of CPU time and memory resources
that could make the interface not responsive. The split architecture adopted in VSCode-PVS and the
asynchronous nature of the LSP protocol facilitate the implementation of these mechanisms. The possi-
bility of creating an integrated debugger for executable fragments of a PVS specification is also another
interesting option that needs to be explored for VSCode-PVS. The Visual Studio Code editor provides
already the graphical elements necessary for interacting with the logic of the debugger, including break-
points, an interactive panel with the usual run/step-into/step-over commands, as well as an interactive
view for inspecting the value of variables, call stack, etc. These elements need to be customized for
the PVS language, and appropriate hooks need to be implemented in the back-end to provide the logic
necessary for debugging.

In [15], a Proof General plugin is developed that introduces syntax highlighting and autocompletion
for the Coq specification language. In [17], a generic user interface for theorem proving systems is
introduced. The editor front-end builds on jEdit, and a prototypical specification language for declaring
formal terms such as theories, terms, and context. This approach proves useful to implementing a generic

14 An Integrated Development Environment for the Prototype Verification System

version of basic front-end features such as autocompletion, abstract syntax display, error highlighting,
and tooltips. These and other similar efforts are certainly worth exploring. However, it is unclear if in
the long run they will stand against the rapid evolution of editors such as Visual Studio Code and Atom.

7 Conclusion and Future Directions

A new development environment for the PVS verification system has been presented that aims to align
the PVS front-end to that of main stream tools used by software developers. A split architecture is
adopted, where an editor front-end communicates with a server back-end. The back-end uses process
workers to adapt the APIs of PVS to the Language Server Protocol, a de-facto standard communication
protocol for code editors and analyzers. The editor front-end builds on the features of Visual Studio
Code, a modern open-source code editor.

VSCode-PVS is under active development. The environment is still in its infancy, but it already
advances the standard Emacs front-end of PVS in many respects — live diagnostics, context-sensitive
auto-completion, point-and-click navigation, interactive tree-based view for proof exploration.

Previous attempts carried out by others to develop a new front-end for PVS had little success. One
attempt aimed to integrate PVS in Eclipse. Difficulties were encountered to align the APIs provided by
PVS to the functionalities required for Eclipse, and the development was ultimately abandoned. Another
attempt involved the development of a Python front-end for PVS, using the wxPython17 graphic library.
A simple interface was created to exchange commands with PVS. Fragments of these implementations
can be found in the GitHub repository of PVS18.

Current work on the VSCode-PVS front-end focuses on the integration with the next release of
PVS, which provides a new XMLRPC interface that will improve performance and robustness of the
language server. The creation of an integrated debugger is also planned. It will align the functionalities
of the PVSio evaluator to those of debuggers used in programming languages. Integration with the
PVSio-web [5] prototyping environment is another future direction. PVSio-web enables the creation
of interactive prototypes based on formal models. The prototypes resemble the visual appearance of a
final system. They can be used to create scenario-based simulations that facilitate engagement between
PVS experts and developers that are not familiar with PVS or formal methods (see [4] for application
examples and success stories).

Acknowledgement. Work by the first author is supported by NASA’s System Wide Safety Project under NASA/NIA
Cooperative Agreement NNL09AA00A.

References

[1] David Aspinall (2000): Proof General: A generic tool for proof development. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Springer, pp. 38–43, doi:10.1007/3-
540-46419-0 3.

[2] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp & André Platzer (2015): KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In: International Conference on Automated Deduction,
Springer, pp. 527–538, doi:10.1007/978-3-319-21401-6 36.

17https://wxpython.org
18https://github.com/SRI-CSL/PVS

Paolo Masci & César A. Muñoz 15

[3] K Rustan M Leino (2010): Dafny: An automatic program verifier for functional correctness. In: Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning, Springer, pp. 348–370,
doi:10.1007/978-3-642-17511-4 20.

[4] Paolo Masci (2019 (to appear)): Experiences on Streamlining Formal Methods Tools. In: International
Workshop on Practical Formal Verification for Software Dependability (AFFORD’19).

[5] Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon & Harold Thimbleby (2015): PVSio-
web 2.0: Joining PVS to HCI. In: International Conference on Computer Aided Verification, Springer, pp.
470–478, doi:10.1007/978-3-319-21690-4 30.

[6] Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon & Harold Thimbleby (2014): Formal verification of medical
device user interfaces using PVS. In: International Conference on Fundamental Approaches to Software
Engineering, Springer, pp. 200–214, doi:10.1007/978-3-642-54804-8 14.

[7] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn & Jakob von Raumer (2015): The Lean
theorem prover (System Description). In: International Conference on Automated Deduction, Springer, pp.
378–388, doi:10.1007/978-3-319-21401-6 26.

[8] César A Muñoz (2003): Rapid prototyping in PVS. Technical Report, NASA/CR-2003-212418, NIA
Report No. 2003-03. Available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
20040046914.pdf.

[9] César A. Muñoz & Ramiro A. Demasi (2012): Advanced Theorem Proving Techniques in PVS and Ap-
plications. In Bertrand Meyer & Martin Nordio, editors: Tools for Practical Software Verification: LASER,
International Summer School 2011, Elba Island, Italy, Revised Tutorial Lectures, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 96–132, doi:10.1007/978-3-642-35746-6 4.

[10] Sam Owre, John M Rushby & Natarajan Shankar (1992): PVS: A Prototype Verification System. In: Interna-
tional Conference on Automated Deduction, Springer, pp. 748–752, doi:10.1007/3-540-55602-8 217.

[11] Sam Owre, Natarajan Shankar, John M Rushby & David WJ Stringer-Calvert (1999): PVS system guide.
Technical Report, Computer Science Laboratory, SRI International, Menlo Park, CA. Available at https:
//pvs.csl.sri.com/doc/pvs-system-guide.pdf.

[12] M. Palmieri, C. Bernardeschi & P. Masci (2019, to appear): A Framework for FMI-based Co-Simulation of
Human-Machine Interfaces. Software and Systems Modeling.

[13] Maurizio Palmieri, Cinzia Bernardeschi & Paolo Masci (2018): Co-simulation of Semi-autonomous Systems:
The Line Follower Robot Case Study. In Antonio Cerone & Marco Roveri, editors: Software Engineering
and Formal Methods, Springer International Publishing, pp. 423–437, doi:10.1007/978-3-319-74781-1 29.

[14] Grant Olney Passmore & Denis Ignatovich (2017): Formal verification of financial algorithms. In: Interna-
tional Conference on Automated Deduction, Springer, pp. 26–41, doi:10.1007/978-3-319-63046-5 3.

[15] Clément Pit-Claudel & Pierre Courtieu (2016): Company-Coq: Taking Proof General one step closer to a real
IDE. In: CoqPL’16: The Second International Workshop on Coq for PL, Zenodo, doi:10.5281/zenodo.44331.

[16] André Platzer & Jan-David Quesel (2008): KeYmaera: A hybrid theorem prover for hybrid systems. In:
International Joint Conference on Automated Reasoning, Springer, pp. 171–178, doi:10.1007/978-3-540-
71070-7 15.

[17] Florian Rabe (2014): A Logic-Independent IDE. Electronic Proceedings in Theoretical Computer Science
167, p. 48–60, doi:10.4204/eptcs.167.7.

[18] Makarius Wenzel (2012): Isabelle/jEdit: A Prover IDE within the PIDE framework. In: International Con-
ference on Intelligent Computer Mathematics, Springer, pp. 468–471, doi:10.1007/978-3-642-31374-5 38.

[19] Makarius Wenzel (2018): Isabelle/PIDE after 10 years of development. In: UITP workshop: User In-
terfaces for Theorem Provers. Available at https://sketis.net/wp-content/uploads/2018/08/

isabellepide-uitp2018.pdf.

To appear in EPTCS.
c© Markus A. Kuppe

This work is licensed under the
Creative Commons Attribution License.

The TLA+ Toolbox

Markus A. Kuppe
Microsoft Research, Redmond, WA, USA

makuppe@microsoft.com

TLA+ is a high-level, math-based, formal specification language used at companies such as Amazon
and Microsoft to verify designs of distributed and concurrent systems. TLA+ specifications are
written with the publicly available TLA+ Toolbox and verified by tools run from it. Those tools
include a model checker and a proof system that can be used together on the same spec.

The paper discusses the rationale and drawbacks of the Toolbox’s main features. Specifically, it
reports on two Toolbox features which — to the best of our knowledge — are novel in the scope of
formal IDEs: CloudTLC connects the Toolbox with cloud computing to scale up model checking.
Moreover, CloudTLC allows to verify large numbers of models concurrently which enables users to
explore a specification’s design space faster. The expressiveness of TLA+ results in stated expres-
sions that present a challenge for the model checker to evaluate efficiently. To address this challenge,
the Toolbox provides a Profiler to analyze the evaluation to override inefficient expressions with ef-
ficient ones. We provide a summary about the Toolbox’s architecture and its test infrastructure to
show how others can add new features. The paper concludes with outlining future engineering and
research-related work.

1 Introduction

TLA+ is a high-level, math-based, formal specification language used at companies such as Amazon
or Microsoft to design, specify, and document mainly concurrent and distributed systems. Systems are
specified as formulas expressed in the Temporal Logic of Actions [9, 10], a variant of Pnueli’s original
linear-time temporal logic [20]. Data structures are represented with Zermelo-Fränkel set theory with
choice. TLA+ is an untyped language and thus simpler and more expressive than programming languages
[16]. Emitting executable code is not part of the scope of TLA+. It is implementation language agnostic
and intends to aid users in finding bugs above the code level.

The PlusCal algorithm language is a formally defined and verifiable pseudocode [11] that translates
into TLA+. PlusCal resembles an imperative programming language and is especially well suited to
express sequential and shared-memory multithreaded algorithms. However, the PlusCal language is less
expressive compared to TLA+ and does not support TLA+ language features such as refinement or fine-
grained fairness constraints.

Supporting TLA+ tools to check and reason about TLA+ and PlusCal specifications are the explicit
state model checker TLC and the TLA+ proof system (TLAPS). While TLC [23] is used to check a finite
model of a specification, TLAPS [1] supports deductive reasoning about a specification with unbounded
domains. Auxiliary TLA+ tools are the SANY parser to syntactically and semantically check a TLA+

specification, the PlusCal translator to translate a PlusCal algorithm to TLA+, and a pretty-printer to
render TLA+ as LATEX. The tools listed above are command-line tools.

As the metaphor implies, the TLA+ Toolbox combines the previously mentioned tools into an inte-
grated development environment (IDE). The Toolbox and the underlying tools are publicly available at

2 The TLA+ Toolbox IDE

GitHub under the permissive MIT license.1 The TLA+ project is open to community contributions and
has attracted a number of contributors.

This paper is about the 1.6 release of the TLA+ Toolbox and assumes basic knowledge of TLA+

due to space constraints. Relevant TLA+ background material, which is referenced throughout this
paper, is [10, 11, 12, 15]. Section 2 describes the main, user-visible features of the Toolbox by showing
the Simple specification which is part of the TLA+ examples.2 Section 3 provides an overview of the
Toolbox’s architecture and test infrastructure, explaining how others can add new features to the Toolbox.

2 Toolbox Features

At a high level, the Toolbox is organized into the Spec Explorer, Spec Editors, a collection of Models,
a Trace Explorer, and auxiliary parts such as a general purpose logging part. We subsequently call an
individual UI element a part following Eclipse terminology. Parts can be re-arranged freely and stacked
on top of each other to best suit a user’s preference.

2.1 Spec Explorer

Figure 1: Spec Explorer show-
ing five TLA+ specifications.
The active Simple specification
consists of three modules and a
single Model with two history
items.

Following the Eclipse paradigm, the Toolbox can host multiple TLA+

specifications. A specification is a non-empty set of TLA+ modules in-
cluding a root module and optionally a collection of Models. All spec-
ifications are presented in the Spec Explorer (see figure 1) but users
can only work on one specification at a time. The Spec Explorer or-
ganizes the specifications and provides the main entry point. Speci-
fications can be exported from and imported into the Toolbox on the
file-system level. Contrary to most Eclipse-based IDEs, the Toolbox
does not use the Eclipse file-system abstraction supporting direct ac-
cess to the TLA+ modules on the file-system.

2.2 Spec Editor

The central UI part of the Toolbox, using most screen estate, is the Spec
Editor. The Spec Editor can stack multiple editors for each module. It
provides a set of commands to format TLA+ comments and integrates
the pretty-printer. A pretty-printed module opens in an auxiliary part
and optionally updates automatically when the specification is saved.
This functionality is useful when formatting and layouting a specifica-
tion for publication. Underpinning the Spec Editor are the syntax and
semantic checker (SANY) and the PlusCal translator. The former is
automatically invoked when the Spec Editor is saved while the latter
translates a PlusCal algorithm to TLA+ when invoked by the user.

1https://github.com/tlaplus/tlaplus
2https://github.com/tlaplus/Examples/tree/master/specifications/TeachingConcurrency

Markus A. Kuppe 3

Figure 2: Completion for PlusCal expressions. The syntax and semantics of expressions are shown as
well.

2.2.1 PlusCal

For PlusCal, the Spec Editor embeds the PlusCal algorithm as well as its TLA+ translation in a single
TLA+ module such that the PlusCal algorithm is nested in a TLA+ comment (compare left editor in
figure 3). This design decision allows users to quickly navigate to and from a TLA+ translation which
helps to understand the PlusCal expression. The exposure to TLA+ has also been found to encourage
users to learn TLA+. Lastly, users will modify the translation, such as adding TLA+ print statements,
when debugging of a specification becomes necessary.

Combining a PlusCal algorithm and its TLA+ translation into a single specification file poses the
risk that the translation runs out of sync unnoticed. To alleviate this problem, a TLC feature is pending
implementation which — prior to model checking — will issue a warning if a translation has become
stale.3

As seen in figure 2, the Spec Editor provides templates for PlusCal expressions. The goal of tem-
plates is not to speed up typing — which is of lower importance when specifying systems — but to guide
novice users by putting the syntactical and semantic documentation of PlusCal expressions at their fin-
gertips. It also provides engineers with a more familiar user-experience known from programming IDEs.
Additionally, completion for TLA+ operators and variable names is available but limited compared to
code completion due to the lack of types or type inference.

2.2.2 TLAPS

As shown in figure 3, a hierarchical TLA+ proof (compare [13]) is represented textually as opposed
to structurally. However, the structure is explicitly engraved in the hierarchical nature of the proof. A
user can focus on individual proof-steps by collapsing other, irrelevant steps. Steps can be collapsed at
any hierarchical level. Furthermore, a proof usually follows below the TLA+ behavior formula of the
system being specified, but proofs can also be organized into separate TLA+ modules. In this case it is
convenient to open each module in an editor and re-arrange the editors side-by-side.

Decomposing a step from sub-steps down to leaf-steps, that are sufficiently low-level to be accepted
by some of the TLAPS back-end verifiers, is handled by a built-in editor command. The command is
implemented in the Toolbox as a single-page wizard such that users can interactively explore the logical
decomposition of a step. When a user is satisfied, the chosen decomposition replaces the decomposed

3https://github.com/tlaplus/tlaplus/issues/296

4 The TLA+ Toolbox IDE

Figure 3: A (split) Spec Editor showing a PlusCal algorithm and related safety properties (left) as well
as its partially collapsed TLAPS proof (center). The <2>2 leaf step failed to prove (red). The right-hand
side displays the expanded hypothesis of the failed obligation.

step in the actual proof. Another editor command exists in order to renumber steps if necessary. After
invoking the proof system to verify a proof obligation, the selected proof steps are colorized to indicate
successfully proven, omitted, and failed steps. Failed proof obligations are additionally displayed in the
logging part with detailed information about the hypothesis (compare right-hand side of figure 3).

TLAPS does not re-prove an obligation by maintaining a fingerprint of every proof obligation (see
[3]). A user can force TLAPS to forget fingerprints when launching TLAPS from the Toolbox. The Tool-
box additionally provides the functionality to select specific TLAPS back-end provers. This functionality
is orthogonal to pragmas that can be explicitly stated at individual proof-steps.

Contrary to the model checker TLC, which is part of the Toolbox, users are required to install TLAPS
manually. The Toolbox however will automatically detect TLAPS and expose its controls, provided that
TLAPS has been installed into the OS-specific standard locations.

2.3 Model

A TLC model constraints the potentially infinite-state machine described by the behavior formula to
a finite-state machine. This is done by restricting declared constants to finite domains and by stating
bounds for otherwise unbounded variables.4 Furthermore, the model lists the safety and liveness proper-
ties to be checked.

The Toolbox represents a model by a Model part. The Model part however is a superset of the TLC
model, because it not only contains the information discussed above but additionally stores the TLC
command-line parameters and Java VM settings.

Contrary to the proof system (compare section 2.2), the Toolbox provides a structural representation

4An unbounded message buffer will e.g. grow infinitely large.

Markus A. Kuppe 5

of a Model by grouping related inputs into tabs and sections. To guide users, inputs are validated when
entered. Warnings as well as suggested fixes are placed next to the input controls. For usability reasons
and to lower cognitive load, advanced controls are initially collapsed or hidden. The Model is kept in
sync with the specification such that relevant changes, e.g. the addition or removal of a constant, are
automatically reflected in the Model.

A Model is associated with its respective specification in the Spec Explorer. The Spec Explorer also
maintains a history of model checker runs s.t. each history entry stores the model checking result and
snapshots of the specification’s modules (see figure 1 and compare section 2.3.2). Modules can be diffed
to identify changes between long model checking runs.

At the file-system level, a Model is stored as an XML file and can thus be stored in e.g. a source code
management system to later reproduce model checking runs.

2.3.1 CloudTLC

The CloudTLC feature is a push-button solution to remotely run model checking on a set of cloud in-
stances. It first provisions cloud instances by deploying a Java VM and TLC and by copying the specifi-
cation as well as the Model to be checked. Afterwards, CloudTLC starts TLC as defined by the Model
(compare section 2.3). If a user opted to run model checking on multiple instances, CloudTLC starts
TLC in distributed mode (see [6]). Upon completion of model checking, CloudTLC instances terminate
automatically after a grace period.

During model checking, the Toolbox remains connected to the CloudTLC instance to receive progress
information and final results. Alternatively, the Toolbox may disconnect at any time. CloudTLC sends
the model checking results to a user-provided email address formatted s.t. the result can be imported into
the Toolbox. In other words, CloudTLC is completely transparent: Toolbox features such as the Profiler
or Trace Explorer (see section 2.3.3 and 2.3.4 below) work as if model checking runs locally.

CloudTLC can alternatively be started by running the Toolbox in command-line mode which is useful
for e.g. automation. This feature is used by the TLC performance test suite (compare section 3.2).

CloudTLC has been implemented for Microsoft Azure, Amazon AWS, and Packet Net. Adding
additional IaaS providers requires little effort because CloudTLC is based on a multi-cloud toolkit (see
3.1.3). Its startup time is dominated by how long it takes an IaaS provider to spin-up instances. To reduce
startup time, subsequent model checker runs re-use previously provisioned instances unless instances
have already terminated.

CloudTLC allows users to shift from a primarily sequential model checking workflow to one where
any number of models can be checked concurrently. Additionally, it scales up model checking to more
powerful hardware. This allows design variants or competing optimizations to be quickly explored in
parallel which either reduces overall specification time or enables a broader exploration of the design
space.

2.3.2 Results

Model checking progress as well as final results are reported in the Results part. Results include start
and end measured in wall clock time, the probability of an incomplete state space exploration due to
distinct states falsely being considered equivalent, as well as action (see section 2.3.3 below) and state
space statistics.

State space statistics include the diameter of the state graph, the distinct as well as the total number
of states. Distinct states equals the order of the state graph where total states counts the number of states

6 The TLA+ Toolbox IDE

(a) (b)

Figure 4: Action and evaluation metrics for the global scope overlayed onto the Spec Editor. Red boxes
indicate actions that are never enabled and dead expressions. The hover help displays TLA+ action
metrics. Clicking the heatmaps at the bottom selects the corresponding expression or action.

generated as part of model checking. By definition, the number of distinct states is always equal to or
less than the number of total states. The ratio of distinct to total states approximates the degree of the
state graph.

Statistics can be plotted to predict the remaining model checking time.5 Furthermore, a state graph
may be visualized graphically. This however is restricted to small graphs due to the inherent complexity
of layouting directed graphs. Large graphs may be exported to specialized tools such as Cytoscape [22].

2.3.3 Profiler

Experience shows that engineers primarily rely on model checking as opposed to theorem proving to
verify designs and optimizations. Such users are therefore interested in checking large models which
makes them not only the target of CloudTLC (see section 2.3.1), but also of the Toolbox’s Profiler.

Profiling a TLA+ specification collects four different types of metrics grouped into evaluation and
action metrics. Evaluation metrics collect the invocation count and the cost of evaluating expressions at
the global as well as at the call-chain level. To explain their differences, we will first assume an identical,
constant cost for all expressions which would allow to identify the biggest contributor to overall model
checking time by simply looking at invocations. However some expressions require the model checker
to explicitly enumerate data structures as part of their evaluation for which costs are the quantitative
measure: Let S be a set of natural numbers from N to M such that N �M and let ∀s ∈ SUBSET S :
s ⊆ S be a TLA+ expression. The cost of evaluating the expression equals the number of operations
required by the model checker to enumerate the powerset of S which will clearly be a major contributor
to model checking time even if its number of invocations is low. Action metrics on the other hand are
the number of total and distinct states reported at the TLA+ action level (compare section 2.3.2). They

5The cardinality of the set of unexplored states plotted over time usually describes a parabola.

Markus A. Kuppe 7

allow to quantify state space explosion — exponential growth of the state space associated with a linear
increase in the size of the specification [2] — at the action level. Action metrics distinguish TLC’s
Profiler from implementation profilers.

The Toolbox overlays a metric upon the Spec Editor by highlighting locations with colors chosen
from a one-dimensional heatmap based on the corresponding metric values. For example, expressions
with the highest number of invocations will be highlighted with a red color whereas expression with zero
invocations will be dark blue. The heatmap shows up as a legend at the bottom of the Spec Editor and
reveals the corresponding editor location when clicked. Users can switch the overlay between invocation
counts, costs, the sum of invocation counts and costs, the total number as well as the distinct number of
states. Additionally, users can narrow the overlay to single call-chains by selecting individual expressions
on the call-chain. To further discuss the Profiler’s functionality and representation, we will consider the
TLA+ specification shown in figure 4a, which is a deliberately inefficient translation of the Simple

algorithm shown in figure 3. The enablement predicate on line 50 of action b, consisting of the two
expressions x [s] = 1 and y [s] = 0, has been invoked the most globally. Related, action b has been found
to produce 87 states of which only 29 are distinct (see hover help in figure 4b). In contrast, action a

is much more efficient in terms of its total to distinct states ratio. This draws the user’s attention to
the enablement predicate of action b which is weaker compared to the predicate pc [s] = ”a” of action
a . The enablement predicate of b is true of states for any value of pc. While this does not violate the
specification’s safety properties, changing the enablement predicate of b to pc [s] = ”b” puts the total
to distinct state ratio in the region of action a and corresponds to the regular translation of the Simple
algorithm. Additionally, the enablement of action d on line 54 is evaluated 153 times. Yet the numbers
of total and distinct states are zero as indicated by the red boxes. This either indicates a spec error or
suggests the removal of action d .

In summary, the Profiler makes different kinds of inefficiencies explicit including the ones discussed
above. On this information users can take appropriate measures. For inefficiencies related to the evalu-
ation of expressions, users can override TLA+ operators with more efficient variants up to the extreme
where TLA+ operators are overridden with functions implemented in Java. These TLC module overrides
are usually significantly faster to evaluate.6

The Profiler neither requires the specification nor the model to be modified in order to collect metrics.
However, profiling has a non-negligible performance overhead and should be disabled when checking
large models. Collecting profiling measurements is unavailable when TLC runs in distributed mode.

2.3.4 Trace Explorer

Should model checking find a violation of any of the stated safety or liveness properties, the correspond-
ing error trace will be visualized in the Trace Explorer as shown in figure 5. An error trace is a sequence
of states. A state is an assignment of values to variables.

For enhanced readability, the Trace Explorer uses a color mapping to visually discern changed top-
level and nested variable values. Navigating from a state in the trace to the location of the corresponding
TLA+ action and — if applicable — PlusCal expressions in the Spec Editor is supported too. The Trace
Explorer can handle traces with thousands of states.

To study traces, the Trace Explorer supports the evaluation of trace expressions. A trace expression
is an ad-hoc definition of a TLA+ expression with the expressiveness up to TLA+ actions; relations
between a state and its successor state [9, p. 4-5]. A trace expression may optionally be named to

6http://jmh.morethan.io/?sources=https://raw.githubusercontent.com/tlaplus/tlaplus/master/

tlatools/test-benchmark/tlc2/tool/ModuleOverwrites-1531220029-80dc6de2b.json

8 The TLA+ Toolbox IDE

facilitate expression composition. A trace expression may be built from all operators in the scope of the
root module. In addition, two built-in operators are available:

TEPosition Equal to the position of the corresponding state in the error trace

TETrace A TLA+ sequence of states such that TETrace[TEPosition] equals the state at position
TEPosition in the error trace

Note that the two built-in operators increase the expressiveness of trace expressions beyond the expres-
siveness of actions by allowing expressions to be formed from the collection of variables of all states
of the trace. For example, an expression can compare the values of variables of two or more arbitrary
states. This is e.g. useful to format a trace such that it can be copied verbatim to third-party tools (see
trace variables Clock, Process, X, and Y in figure 5 or listing 1 and compare [8]).

At the technical level, the Toolbox evaluates trace expressions by generating a special TLA+ module
which is checked with TLC using the functionality discussed in section 3.1.

3 Toolbox Architecture

The TLA+ Toolbox aims to be an industrial strength integrated development environment with support
for all aspects of designing, documenting, and specifying TLA+ specifications and PlusCal algorithms.
It is designed to be lightweight such that features are implemented at the underlying tool layer to satisfy
command-line aficionados, allow re-use by adopters, and integration with automation. Features not core
to TLA+, such as graphical visualizations of state spaces or error traces, are left to specialized, third-party
tools by exporting relevant information in compatible data formats.

For model checking, the Toolbox stores the system under specification as well as each Model in
dedicated files. For a TLAPS proof, the system specified and the proof usually exist in the same file.

To attract a wide range of users, the Toolbox is compatible with the three most common operating
systems: macOS, Windows, and Linux. The Toolbox requires no external dependencies except for
auxiliary functionality such as generating PDFs. To a large extent, this is due to the fact that the Toolbox
is written in Java and built on the Eclipse Rich Client Platform [18]. The Eclipse foundation provides
a number of commonly found IDE features such as a help system, a desktop notification system, and
an update manager. More abstractly, Eclipse additionally defines usability guidelines and best practices
that — while not always applicable to a formal integrated development environment - help enforce a
consistent user experience. The Eclipse foundation also allows third-parties to add functionality by
contributing extensions and OSGi services [17]. However, to the best of our knowledge this has not yet
been leveraged by others.

Building the Toolbox on top of Eclipse is not without drawbacks. The annual release schedule of
the Eclipse foundation has recently changed to quarterly releases. Yet, updating the Toolbox to a new
Eclipse foundation oftentimes leads to subtle bugs. These bugs are not in the scope of the Toolbox’s test
suite because they e.g. originate at the Eclipse layers which have their own test suites. Remaining on an
older Eclipse release is no alternative either because of the rate at which macOS, Windows, and Linux
innovate in turn. Thus, an update requires time-consuming manual testing.

The Spec Explorer (see section 2.1) is the primary interface to work with specification files. For con-
venience reasons however, users are also allowed to create, move, or modify files at the native file-system
layer. This design causes many incompatibilities since Eclipse only supports file modifications through a
built-in file-system abstraction. However, Eclipse’s higher-level building blocks depend on functionality
provided by this abstraction, causing e.g. the Spec Explorer and Spec Editor to lose sync with the native

Markus A. Kuppe 9

file-system. In hindsight, file modifications should have been restricted to the Toolbox. Alternatively,
the limitation could have been addressed at the source - the Eclipse’s file-system abstraction - instead of
adding workarounds at the Toolbox layer.

Figure 5: Trace Explorer showing the trace of a vio-
lated liveness property. Four trace expressions (bold
font) have been evaluated. The definitions of three
trace expressions are visible in the second from the
top control. The expanded state shows the values
for variables declared in the spec (pc, x, y) and
via trace expressions.

Throughout the development of the Toolbox,
it has become clear to the authors that the Eclipse
foundation has to be considered a whitebox com-
ponent of the Toolbox. In other words, projects
built on top of Eclipse have to accept the burden
of co-ownership of Eclipse and help with mainte-
nance and innovation efforts.

3.1 Back-end integration

The short-lived, lightweight TLA+ tools such as
the SANY parser, PlusCal translator, or pretty-
printer are executed as part of the Toolbox process
for latency reasons. Extending this functionality
is only possible via extensions and OSGi services
as discussed in section 3. The heavyweight model
checker and proof system back-ends however are
spawned as separate processes for each verifica-
tion request. The reasons to spawn separate pro-
cesses are as follows:

• A back-end cannot be executed in-process
because it is implemented in a language that
cannot execute on the Java VM. This is true
for TLAPS which is written in OCaml.

• Process separation acts as a circuit breaker
where a crash of either a back-end or the
Toolbox does not interfere with the other
process. For example, we do not want a
Toolbox crash to also crash a long-running
model checker run. This safeguard is espe-
cially important while a back-end matures.

• The Java VM’s runtime parameters are
fixed after Toolbox startup. Running a
back-end as part of the Toolbox causes the
back-end to inherit the Toolbox’s parame-
ters. The resource requirements of back-
ends usually do not intersect with those of
the Toolbox, i.e. model checkers have very
high resource requirements (compare sec-
tion 2.3.1).

10 The TLA+ Toolbox IDE

3.1.1 Toolbox to Back-end

The Toolbox provides a framework to spawn back-ends that hooks into the Eclipse foundation to pro-
vide user-visible progress and cancellation functionality.7 In this framework, a back-end implements
an adapter that sets command-line parameters. Primarily, the parameters include the path to the TLA+

specification to verify. In addition, parameters may include performance-specific settings such as the
number of cores the back-end may use.

When model checking, the Toolbox additionally serializes a subset of the Model into a plain-text
configuration file (compare section 2.3). This configuration contains the definition of the TLA+ be-
havior specification, invariants and properties to be checked, definitions for all declared constants, and
optionally advanced information such as definition overrides as well as state and action constraints. The
configuration itself is applicable to model checking in general and not specific to TLC. The configuration
is therefore reusable by other back-ends.

3.1.2 Back-end to Toolbox

The Toolbox consumes progress and final results of back-end processes with its parsing framework. This
framework is connected to the Spec Editor, Results part, and Trace Explorer following the Model-View-
Presenter (MVP) design pattern.8

1" @@ 3 :> "a" @@ 4 :> "a")

2@!@!@ENDMSG 2217 @!@!@

3@!@!@STARTMSG 2217:4 @!@!@

45: <next_action line 175, col 3 to line 209, col 2 of module TE>

5/\ X = 1

6/\ Y = 0

7/\ Process = 2

8/\ Clock = "{\"0\":1 , \"1\":2 , \"2\":1}"

9/\ x = (0 :> 1 @@ 1 :> 1 @@ 2 :> 1)

10/\ y = (0 :> 0 @@ 1 :> 1 @@ 2 :> 0)

11/\ pc = (0 :> "b" @@ 1 :> "Done" @@ 2 :> "b")

12@!@!@ENDMSG 2217 @!@!@

13@!@!@STARTMSG 2217:4 @!@!@

146: <next_action line 220, col 3 to line 254, col 2 of module TE>

15/\ X =

Listing 1: A chunk of TLC back-end output containing a single complete multi-line statement (line 4
to 11). The statement corresponds to the state (constant 2217) of an error trace (constant 4). The state,
represented with valid TLA+ (line 5 to 11), equals the expanded state shown in figure 5.

A back-end specific parser has to incrementally consume a stream of back-end output which consists of
variably sized chunks of potentially incomplete print statements. For efficiency reasons — error traces
occasionally contain thousands of states — and to simplify the implementation of parsers, parsing is
based on Toolbox specific formatting of back-end output.9 It is split into the following three stages:
First, a parser buffers chunks of characters into lines separated by a newline character. In the second
stage, a parser collects all lines of a multi-line statement. This is possible because both back-ends wrap
lines of a multi-line statement with a start and end line tagged by special tokens. Finally, a parser de-
serializes a multi-line statement into objects as part of the MVP pattern. To map statements to a severity

7https://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
8https://en.wikipedia.org/wiki/Model-view-presenter
9TLAPS and TLC have command-line parameters to activate their Toolbox specific output mode.

Markus A. Kuppe 11

and object types used by the Toolbox, a token contains a tuple of constant numbers. Listing 1 shows an
example of a multi-line statement. If applicable, the multi-line statement itself is formatted to be valid
TLA+ such as when an error trace is printed.

In summary, the Toolbox provides low-level, text-based frameworks to integrate new back-ends.10

These frameworks put minimal requirements on individual back-ends which can be implemented in any
programming language. Back-ends need not provide sophisticated interfaces such as IPC or a REST
API. Instead existing text-based inputs and outputs can be reused.

The flexibility of the low-level and text-based frameworks comes at a price because evolving text-
based inputs and outputs is challenging. The lack of schema validation means that bugs can only be
caught during runtime. Supporting independently developed and evolving back-ends is expected to be
an obstacle. For the model checker, this problem is alleviated by following a synchronized release
schedule which is still error-prone and requires significant testing of both the back-end and the Toolbox
(see section 3.2). The maturity of the TLAPS back-end means that its inputs and outputs are stable.

Performance problems related to parsing large outputs appeared in the past which had to be ad-
dressed by low-level optimizations of the implementation. The frameworks do not support controlling a
back-end during execution which would allow e.g. for graceful termination of back-ends. Note that the
model checker exposes a subset of its configuration and output via the Java Management Extension [19].
However, the Toolbox does not use this mechanism yet.

3.1.3 CloudTLC Back-end

For CloudTLC, a special back-end has been implemented directly as part of the Toolbox (see 2.3.1
above). It is built with the frameworks discussed in section 3.1 and a multi-cloud toolkit that provides
an abstraction from individual IaaS providers.11The sequence diagram in figure 6 depicts the interaction
between the building blocks of the CloudTLC back-end:

Deploy The Toolbox first queries the chosen IaaS provider via https for specifically tagged CloudTLC
instances. If the query result is empty, the Toolkit requests the IaaS provider to launch the given
number of instances. If the query is non-empty, it starts the returned instances and skips the
following provisioning phase.

Provision Based on an installation script, the Toolbox configures the stock OS and installs dependencies
of the model checker. Authentication credentials, needed by later phases of CloudTLC, are copied
from the Toolbox’s environment variables. The provisioning phase directly communicates with
the instances via ssh.

Launch The Toolbox transfers the specification and the model to the instance and starts the model
checker remotely. The model checker continuously streams its output through the toolkit to the
local TLC parser. The result is additionally sent to a user-provided email address.
The instance remains on-line until manually terminated, in case the Result email cannot be deliv-
ered due to e.g. aggressive SPAM protection on the receiver end.

Terminate The instance will wait for subsequent connections before it terminates itself after a given time
frame if email delivery in the previous phase succeeded. With some IaaS providers, termination
requires an authenticated call to the provider relying on the authentication credentials transferred
as part of the previous provisioning phase.

10New TLAPS provers should rather be added at the TLAPS layer.
11https://jclouds.apache.org/

12 The TLA+ Toolbox IDE

Due to the fact that the hardware specifications of cloud instances are known at development time, the
model checker can be optimally deployed and configured. For example, the instance’s operating system
and the model checker’s runtime parameters are chosen based on the hardware specs. The CloudTLC
back-end is implemented with TLC in mind but is open to extensions.

3.2 Testing

Toolbox Toolkit IaaS Instance Inbox

Deploy
Start instancehttps

IPhttps

Provision
Script, Config, Authssh

ackssh

Launch
TLC , Spec, Model ssh

Model-Check

Progressssh

Chunks

Resultssh

Chunks
Resultsmtp

Terminate
Authhttps

Import

Result

Figure 6: Sequence diagram of CloudTLC. Message la-
bels show the logical payload. Subscripts depict the name
of the communication protocol. For brevity reasons, the
deploy phase has been simplified and the diagram re-
stricted to show CloudTLC executing with a single in-
stance.

The Toolbox development follows a com-
bination of the test-driven and the test-last
methodologies. Tests are defined at the UI
level and are written by Toolbox developers
as well as dedicated test engineers.12 At the
time of writing, a test suite of 178 unit, func-
tional and end-to-end tests validate the main
workflows of the Toolbox. The tests include
workflows that run the model checker. How-
ever, the tests do not cover TLAPS yet. Ded-
icated test suites exist for the model checker
and the proof system. The TLC suite con-
sists of 802 unit, integration, and end-to-end
tests. The TLAPS test suite contains 56 tests.

The Toolbox’s test execution is fully au-
tomated and runs as part of the automated
build on all three operating systems men-
tioned above. Builds are executed by a con-
tinuous integration system for each commit
in the source code repository. While test re-
sults do not get published, the build output of
the continuous integration system is publicly
available.13 Based on the CloudTLC back-
end in command-line mode (compare sec-
tions 2.3.1 and 3.1.3), a test suite consisting
of user-provided, real-world specifications
continuously checks the performance of the
model checker. Overall, the test suites pro-
vide a useful safety measure to catch func-
tional as well as performance-related regres-
sions early in the development life-cycle.

12https://www.eclipse.org/rcptt/
13https://nightly.tlapl.us/

Markus A. Kuppe 13

4 Conclusion

This paper discussed the high-level, user-visible features of the 1.6 release of the TLA+ Toolbox. It
outlined the editing support available in the Toolbox that aids users in writing TLA+ specifications and
PlusCal algorithms. The paper introduced the Toolbox’s support for combining model checking and
deductive reasoning with a proof system. For the model checker, the paper detailed the functionality to
analyze error traces. We focused on two features which — to the best of our knowledge — are not found
in other formal IDEs: CloudTLC connects the TLA+ Toolbox with cloud computing to satisfy the de-
mand to check larger models and to explore the design space faster. A Profiler helps users understand the
evaluation costs of TLA+ expressions thereby aiding them in overriding expressions with more efficient
ones. State space statistics at the TLA+ action level allow users to diagnose state space explosion. The
paper discussed the architecture and test infrastructure of the Toolbox in hopes of enabling others to add
new Toolbox features and to inspire the development of IDEs for more formal languages.

Whether or not the Toolbox can be considered successful in making the TLA+ specification language
more accessible is difficult to answer.14 Its previous release has been downloaded approximately 20k
times whereas the standalone model checker has seen one-tenth of this number. The Toolbox has users
at major companies such as Amazon and Microsoft and an active community of contributors.

5 Future Work

In the future we intend to add the following features:

TLAPS The main challenge in writing an invariance proof is finding the inductive invariant. Trying
to prove an invalid inductive invariant wastes a lot of time. [14] showed that model checking is useful
to validate inductive invariant candidates despite the enormous state space attached to it. The trick, that
is already implemented in the TLC model checker, is to randomly select and check a subset of all type-
correct initial states. With this approach, repeated model checking finds violations with high probability
after only a few runs. However, the Toolbox does not yet support this kind of model checking with a
special model checking mode that aggregates the results of probabilistic runs.

The idea of taming state space explosion by randomly selecting subsets of all reachable states is
additionally useful to validate lower-level proof steps before a user sets out to prove them [15]. The
Toolbox should automatically model check proof steps in the background and colorize steps in the Spec
Editor if violations are found.

Profiler The Profiler makes it easy to identify TLA+ expressions that are slow to evaluate. Engineers
have expressed interest in exploiting TLC module overrides to override inefficient expressions with func-
tions implemented in Java. However, a module override is not trivial to setup which is especially true for
users unfamiliar with Java. We will investigate how the Toolbox can better assist users who wish to setup
module overrides. The major challenge of which is to assert the equivalence of a module override with
the TLA+ expression it is overriding. On a related note, [7] explored the idea of manually translating a
TLA+ invariant to Java Pathfinder (compare [4]) to model check module overrides.

14The 1.6. Toolbox prompts users to share TLC executions statistics and to identify Toolbox installations.

14 The TLA+ Toolbox IDE

Trace Exploration The Trace Explorer provides a textural representation of error traces which is ideal
to analyze traces with trace expressions. A textural representation on the other hand is not the most
appropriate visualization to understand the dynamics of a system. [21] pioneered an error trace animator
with which traces can be graphically animated while simultaneously lifting the trace into the problem
domain of the system being specified. To not require users to learn a new visualization language, the
layout is specified in TLA+. A future Toolbox release will incorporate support to animate error traces
as well as include reusable TLA+ modules that provide operators to specify animations at an abstraction
layer above basic colors and shapes.

Back-ends The work discussed in [5] gave rise to a symbolic model checker for TLA+, the results of
which are encouraging. We wish to integrate this model checker into the Toolbox as described in section
3.1. However, it is an open question how to best combine the advantages of the existing explicit-state
and a symbolic model checker. In addition, the symbolic model checker requires users to provide type
information for a subset of TLA+ expressions where its type inference fails. How the Toolbox can warn
users about missing type information and help users state type annotations is unclear. Type inference,
built into the Toolbox, would also allow the Spec Editor to provide a more powerful completion support.

Acknowledgement

The development of the TLA+ Toolbox is a joint effort carried out at the Joint Microsoft Research-INRIA
Centre and by Microsoft Research. Among others, Daniel Ricketts and Simon Zambrovski contributed
significantly to different aspects of the work presented here. The author would like to thank the anony-
mous reviewers for their comments and suggestions as well as Leslie Lamport for constructive criticism
of the manuscript.

References
[1] Kaustuv C. Chaudhuri, Damien Doligez, Leslie Lamport & Stephan Merz (2008): A TLA+ Proof System.

arXiv:0811.1914 [cs]. Available at http://arxiv.org/abs/0811.1914.
[2] Edmund M. Clarke, William Klieber, Miloš Nováček & Paolo Zuliani (2012): Model Checking and the

State Explosion Problem. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann
Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Bertrand Meyer & Martin Nordio,
editors: Tools for Practical Software Verification, 7682, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
1–30. Available at http://link.springer.com/10.1007/978-3-642-35746-6_1.

[3] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts & Hernán Vanzetto
(2012): TLA+ Proofs. arXiv:1208.5933 [cs]. Available at http://arxiv.org/abs/1208.5933.

[4] Klaus Havelund & Thomas Pressburger (2000): Model Checking JAVA Programs Using JAVA
PathFinder. International Journal on Software Tools for Technology Transfer (STTT) 2(4), pp. 366–381,
doi:10.1007/s100090050043. Available at http://link.springer.com/10.1007/s100090050043.

[5] Igor Konnov, Jure Kukovec & Thanh Hai Tran (2018): BmcMT: Bounded Model Checking of TLA + Specifi-
cations with SMT. Available at https://hal.inria.fr/hal-01899719.

[6] Markus Alexander Kuppe (2014): Distributed TLC. Available at http://tla2014.loria.fr/slides/
kuppe.pdf. (Accessed 2016-09-06).

[7] Markus Alexander Kuppe (2017): A Verified and Scalable Hash Table for the TLC Model Checker. Available
at http://www.lemmster.de/talks/MSc_MarkusAKuppe_1497363471.pdf.

Markus A. Kuppe 15

[8] Markus Alexander Kuppe (2019): Visualizing TLA+ Toolbox Error Traces with ShiViz. Available at https:
//github.com/tlaplus/tlaplus/issues/267#issuecomment-481951259.

[9] Leslie Lamport (1994): The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems 16(3), pp. 872–923, doi:10.1145/177492.177726. Available at http://portal.acm.org/
citation.cfm?doid=177492.177726.

[10] Leslie Lamport (2003): Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, Boston.

[11] Leslie Lamport (2009): The PlusCal Algorithm Language. In Martin Leucker & Carroll Morgan, editors:
Theoretical Aspects of Computing - ICTAC 2009, 5684, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
36–60. Available at http://link.springer.com/10.1007/978-3-642-03466-4_2.

[12] Leslie Lamport (2012): How to Write a 21st Century Proof. Journal of Fixed Point Theory and Applications
11(1), pp. 43–63, doi:10.1007/s11784-012-0071-6. Available at http://link.springer.com/10.1007/
s11784-012-0071-6.

[13] Leslie Lamport (2012): How to Write a 21st Century Proof. Journal of Fixed Point Theory and Applications
11(1), pp. 43–63, doi:10.1007/s11784-012-0071-6. Available at http://link.springer.com/10.1007/
s11784-012-0071-6.

[14] Leslie Lamport (2018): Using TLC to Check Inductive Invariance. Available at http://lamport.

azurewebsites.net/tla/inductive-invariant.pdf. (Accessed 2018-08-16).
[15] Leslie Lamport (2019): Proving Safety Properties. Available at https://lamport.azurewebsites.net/

tla/proving-safety.pdf.
[16] Leslie Lamport & Lawrence C. Paulson (1999): Should Your Specification Language Be Typed. ACM Trans-

actions on Programming Languages and Systems 21(3), pp. 502–526, doi:10.1145/319301.319317. Available
at http://portal.acm.org/citation.cfm?doid=319301.319317.

[17] D. Marples & P. Kriens (Dec./2001): The Open Services Gateway Initiative: An Introductory Overview.
IEEE Communications Magazine 39(12), pp. 110–114, doi:10.1109/35.968820. Available at http://

ieeexplore.ieee.org/document/968820/.
[18] Jeff McAffer, Jean-Michel Lemieux & Chris Aniszczyk (2010): Eclipse Rich Client Platform, 2nd ed edition.

The Eclipse Series, Addison-Wesley, Upper Saddle River, NJ. OCLC: ocn262433527.
[19] J. Steven Perry (2002): Java Management Extensions, 1st ed edition. O’Reilly, Beijing ; Cambridge [Mass.].
[20] Amir Pnueli (1977): The Temporal Logic of Programs. IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32. Avail-

able at http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4567924.
[21] William Schultz (2018): An Animation Module for TLA+. Available at https://easychair.org/

smart-slide/slide/8V76#.
[22] P. Shannon (2003): Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction

Networks. Genome Research 13(11), pp. 2498–2504, doi:10.1101/gr.1239303. Available at http://www.
genome.org/cgi/doi/10.1101/gr.1239303.

[23] Yuan Yu, Panagiotis Manolios & Leslie Lamport (1999): Model Checking TLA+ Specifications. In Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, Laurence Pierre & Thomas Kropf, editors: Correct Hardware
Design and Verification Methods, 1703, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 54–66. Available
at http://link.springer.com/10.1007/3-540-48153-2_6.

Preliminary Report. Final version to appear in:
F-IDE 2019

c© J. Brunel, D. Chemouil, A. Cunha, & N. Macedo
This work is licensed under the
Creative Commons Attribution License.

Simulation under arbitrary temporal logic constraints

Julien Brunel David Chemouil
ONERA DTIS and Université fédérale de Toulouse, France

Alcino Cunha Nuno Macedo
INESC TEC and Universidade do Minho, Portugal

Most model checkers provide a useful simulation mode, that allows users to explore the set of possible
behaviours by interactively picking at each state which event to execute next. Traditionally this
simulation mode can not take into consideration additional temporal logic constraints, such as arbitrary
fairness restrictions, substantially reducing its usability for debugging the modelled system behaviour.
Similarly, when a specification is false, even if all its counter-examples combined also form a set
of behaviours, most model checkers only present one of them to the user, providing little or no
mechanism to explore alternatives. In this paper, we present a simple on-the-fly verification technique
to allow the user to explore the behaviours that satisfy an arbitrary temporal logic specification, with
an interactive process akin to simulation. This technique enables a unified interface for simulating the
modelled system and exploring its counter-examples. The technique is formalised in the framework of
state/event linear temporal logic and a proof of concept was implemented in an event-based variant of
the Electrum framework.

1 Introduction

Model checking is one of the most successful techniques for analysing systems, largely due to the ability to
automatically verify whether a temporal logic specification holds in a model of a system. Model validation
and debugging is essential when analysing a system, and most model checkers provide a simulation mode
where the user can explore alternative system traces by choosing how to proceed with the exploration.
With most tools, it is possible to choose one of the possible successor states randomly. Additionally, in
order to provide a finer control and speed up the debugging process, many tools also allow the user to
interactively pick which event to execute next (if the modelling language has some notion of event/action)
and/or one of the next possible states (to support the exploration of non-deterministic events, both features
must be provided). These simulation modes are quite intuitive and can even be used by problem domain
experts unfamiliar with model checking to help validate the model.

Unfortunately this simulation mode only takes into account the system model, traditionally specified
by some sort of transition system or a set of events. However, in some situations it would be extremely
helpful to perform such simulation under additional constraints, for example to assess the impact of
imposing arbitrary fairness constraints. Such constraints reduce the set of valid behaviours and simulation
could help the user validate and better understand their impact (which is not always trivial to infer).
Similarly, when model checking a given temporal logic property it could be very useful to explore the set
of behaviours that falsify it (its set of counter-examples) with a similar simulation technique. Currently
most model checkers display a single counter-example when a property is false. As a consequence, the
user often inspects the (lone) counter-example to locate the possible source of the problem, changes the
model (or specification) to address it, only for the model checker to reveal a different counter-example to
the same property. The ability to explore distinct counter-examples at once could allow the user to identify
a more general fix, thus tightening the check / analyse / fix loop and making the overall model checking
process more efficient.

In this paper we propose a simulation technique that explores the set of the behaviours that satisfy (or
falsify) an arbitrary temporal logic specification. At any point the user can focus on a particular state of

2 Simulation under arbitrary temporal logic constraints

a trace, see which alternative events enable the same trace prefix to be extended into a complete valid
behaviour (another infinite trace satisfying the property), and follow any of those to proceed with the
exploration. While traditional simulation is rather easy to implement efficiently for any model resembling
a transition system, it is unclear how to do so when additional constraints are imposed. This paper explores
the viability of a rather naïve on-the-fly technique: when a state is focused, multiple queries to the model
checker are run in the background to determine which events can be further explored, while still preserving
the same trace prefix. To tame the complexity in models with many events (or parametrised ones), type
categorisation is supported: the user first focuses on a specific type and only then iterates over the different
events of that type.

This paper is structured as follows. In the next section we very briefly discuss some alternative
techniques to explore the set of behaviours that satisfy (or falsify) a given property. In Section 3 we
formalise our proposal in the general setting of event/state linear temporal logic. Section 4 presents a
prototype implementation of the proposed technique in the Electrum Analyzer [2], the model checker
for the Electrum language [8], an extension of Alloy [7] with linear time temporal logic. The goal of
this prototype is mainly to show the viability of the approach, namely in terms of user-experience and
efficiency. Section 5 wraps-up the paper and presents some ideas for future work.

2 Related work

Some techniques have been proposed to explore of the set of behaviours that satisfy (or falsify) a given
property. The simplest ones just provide iteration over such set, by independently displaying one trace
at a time. This can be achieved by changing an explicit model checking engine to resume search after
finding one counter-example trace, or, in the case of a SAT-based symbolic bounded model checker, by
incrementally adding new clauses that exclude exactly the previous trace, as implemented in the Electrum
Analyzer [2] developed by the authors. The problem is that this frequently keeps yielding traces that are
just slight variations of each other and, since the full set of behaviours is usually too big to be enumerated,
finding interesting variations may prove infeasible. To alleviate this problem, for specific modelling
languages it is possible to define reasonable equivalence classes on traces (e.g., traces that follow the same
control-flow path are deemed equivalent), and implement iteration by restarting the model checker with a
modified property that conjoins the original one with a formula excluding all traces in the class of the
previous counter-example [6, 3].

Problem domain expertise, namely some kind of user input, could lead to more effective exploration.
While in the above techniques user interaction is limited to just asking for the next trace, in [5], by
running multiple queries to the model checker, a proof tree of a CTL property is inferred to “explain”
a counter-example trace, with which the user can interact to ask for new counter-examples. Possible
interactions include asking for alternative proofs (e.g., in a disjunction node), or guiding the search to
explore different parts of the model (e.g., in EX φ nodes, by choosing the next φ -satisfying state). However,
this approach requires substantial knowledge of the underlying proof system for CTL and it is not clear
how it can be generalised to support LTL and fairness constraints.

3 Formalisation

Most systems incorporate both the notion of states and events. State/event linear temporal logic (SE-LTL)
was proposed to allow a more concise and intuitive specification in these cases [4]. The semantics of a
formula in this logic is defined over a labelled Kripke structure (LKS), a tuple (S, I,P,L ,T,Σ,E) where S

J. Brunel, D. Chemouil, A. Cunha, & N. Macedo 3

is a finite set of states, I ⊆ S the set of initial states, P a finite set of atomic propositions, L : S→ 2P a state
labelling function, T ⊆ S×S a transition relation, Σ a finite set of events, and E : T → 2Σ \{ /0} a transition
labelling function. The transition relation is assumed to be total, so every state has at least one successor.
To enable a more efficient exploration, events are categorized with a function T : Σ→ ϒ that assigns a
type to each event. This categorization is natural in many models, namely those with parametrised events.
A path π = 〈s0,a0,s1,a1, . . .〉 of such a typed LKS is an alternating infinite sequence of states and events
where ∀i · (si,si+1) ∈ T ∧ai ∈ E (si,si+1) and s0 ∈ I.

Given a typed LKS, SE-LTL formulas are defined by the following grammar, where p ranges over P,
a over Σ, and t over ϒ:

φ ::= p | a | t | > | ¬φ | φ ∧φ | Xφ | Gφ | Fφ | φ Uφ

Given a path π , the semantics of a formula is the standard one of LTL with the addition that π |= a iff a
is the first event of π and π |= t iff a is the first event of π and T (a) = t. M |= φ means that φ holds in
the typed LKS M, that is, for every path π of M we have π |= φ . Given a formula φ the goal of a model
checker is to find a path π such that π 6|= φ . We will denote the first such counter-example, if it exists,
by M(φ). Given a path π , [π]i is a formula that exactly characterises the prefix of π up to i, defined as
([s0]∧a0)∧X([s1]∧a1)∧ . . .∧Xi−1([si−1]∧ai−1), where Xi is a nesting of i “next” operators and [s] is a
formula that fixes the values of the propositions of state s, defined as the conjunction of all propositions
appearing in L (s) and all negated propositions in P−L (s).

Following [9], our interactive exploration technique is specified by a set of scenario exploration
operations. The state of the exploration is a tuple (φ ,π, i,Φ) where φ is the formula being model checked1,
π the current counter-example on display, i the state the user is focused in, and Φ a function mapping each
path index to a formula that characterises the set of states and transitions the model checker is allowed
to explore at that point. Notation Φ⊕{i . . j} 7→ ψ will denote an update on this last function, that maps
every index between i and j to ψ , keeping all other indexes intact. When updating a single index i, the
notation will be simplified to Φ⊕ i 7→ ψ .

When first checking a property φ this state is initialised as (φ ,M(φ),0,N 7→ >). Basic navigation
operations can then be used to inspect the counter-example, namely ..(φ ,π, i,Φ) = (φ ,π, i+1,Φ) and
//(φ ,π, i,Φ) = (φ ,π, i−1,Φ) (for i > 0). At any point i it is possible to ask for a new counter-example
that differs only in the outcome of the previous event, a useful operation to explore non-determinism. This
operation is defined as .(φ ,π, i,Φ) = (φ ,M(ϕ), i,Φ⊕ (i 7→Φ(i)∧¬[si])⊕ ({i+1 . .} 7→ >)), where ϕ is
φ ∨¬([π]i∧Xi(Φ(i)∧¬[si])). By repeatedly applying . all possible outcomes of the previous action will
eventually be enumerated (or possible initial states when i = 0). Notice how Φ is used to trim a branch of
the behaviour tree when this operation is selected, but maintains memory of previously trimmed branches
while inspecting a trace with .. and //.

Similarly, it is possible to ask for a new counter-example that picks a different next event of the same
type. This operation is defined asI(φ ,π, i,Φ) = (φ ,M(ϕ), i,Φ⊕ (i 7→Φ(i)∧¬([si]∧ai))⊕ ({i+1 . .} 7→
>), where ϕ is φ ∨¬([π]i ∧ Xi(Φ(i)∧ [si]∧¬ai ∧T (ai))). Notice how Φ keeps track that the branch
starting in [si] and labeled with ai has already been explored. To ask for a new counter-example with a
specific type t for the next event, operation Mt (φ ,π, i,Φ) = (φ ,M(ϕ), i,Φ⊕{i+1 . .} 7→ >) can be used,
where ϕ is defined as φ ∨¬([π]i∧Xi([si]∧ t)).

1To simplify, in the remaining of the paper we will present the technique in the context of counter-example exploration
in model checking, but it can obviously be also used for exploring the valid behaviours of a system with additional arbitrary
constraints specified over it, by just running the model checker on the negation of their conjunction and interpreting the resulting
set of counter-examples as witnesses of the system’s behaviour.

4 Simulation under arbitrary temporal logic constraints

1 open util/ordering[Key]
2 sig Key {} sig Room { keys: set Key, var current: one keys } sig Guest { var gkeys: set Key }
3 one sig Desk { var lastKey: Room → lone Key, var occupant: Room → Guest }
4 event In[g: Guest, r: Room, k: Key] modifies gkeys, occupant, lastKey {
5 no r �(Desk �occupant) and k = nextKey[r �(Desk �lastKey), r �keys]
6 gkeys’ = gkeys + g→k
7 Desk �occupant’ = Desk �occupant + r→g
8 Desk �lastKey’ = Desk �lastKey ++ r→k }
9 event Out[g: Guest] modifies occupant { . . . }

10 event Entry[g: Guest, r: Room, k: Key] modifies current { . . . }
11 event Reentry[g: Guest, r: Room, k: Key] { . . . }
12 fun nextKey[k: Key, ks: set Key] : set Key { min[nexts[k] & ks] }
13 fact Init { keys in Room lone → Key and no Guest �gkeys and . . . }
14 assert BadSafety { always { all r: Room, g: Guest, k: Key |
15 (Entry[g,r,k] or Reentry[g,r,k]) and some r �(Desk �occupant) ⇒ g in r �(Desk �occupant) } }
16 check BadSafety for 3 Key, 1 Room, 2 Guest, 10 Time

Figure 1: Hotel example in Electrum with events.

4 Implementation

Electrum is an extension of the popular Alloy formal specification language, developed for the analysis of
dynamic systems. An Alloy model consists of a set of static signatures and relations (of arbitrary arity).
Properties can be specified in an extension of first-order logic: apart from the standard connectives and
quantifiers, Alloy supports closures and some derived relational logic connectives, such as composition
(�) or Cartesian product (→). To make the verification decidable, the user must specify a scope setting
the maximum size of all signatures. Counter-examples are depicted graphically with user-customisable
themes. In Electrum, signatures and relations can be declared mutable (with keyword var) and properties
can be specified using linear temporal logic connectives (including past ones) and primed expressions
(denoting their value in the next state) in addition to Alloy connectives.

Recently, we added the notion of event to Electrum [1]. Figure 1 presents an example of an Electrum
model with events based on a classic Alloy example that specifies a protocol for disposable room key-cards
in a hotel. There are 4 events in this model (check-In, check-Out, Entry, and Reentry), each specified
declaratively with relational logic and primed expressions. The keyword modifies is used to fix the frame.
The desired safety property is that only guests registered as occupants of a room can indeed enter that
room. Unfortunately, that is not the case and the check BadSafety command yields a counter-example
trace where a guest checks in, enters the room after checking out, a second guest checks in, and the first
guest reenters the room afterwards. This is possible because the door lock has not yet been recoded
with the new key issued by the front desk. The previous version of the Electrum Analyzer [2] already
allowed the user to ask for full alternative counter-example traces, but each one could only be inspected
independently (by navigating backward and forward in the states), making it difficult to understand the
relationship between the different counter-examples.

The new prototype interface for simulation and counter-example exploration is depicted in Fig. 2,
which illustrates precisely the exploration of the above counter-example at i = 1. As in the previous
version, the user can focus on a particular state of a trace by navigating backward (//) and forward (..),
using the left- and right-arrows in the bottom toolbar. However, two states are now shown side-by-side,
allowing the user to better understand what is the effect of an event. In the top toolbar we also depict the
trace and which transition is being inspected, and the bottom toolbar in the middle shows the event that
triggers the current transition. Following the formalisation in the previous section, the user can choose a

J. Brunel, D. Chemouil, A. Cunha, & N. Macedo 5

Figure 2: Exploration interface.

different pre- or post-state (the small “reload” buttons under the left- and right-panes, corresponding to
operation .), an event of the same type with different parameters (the “reload” button next to the event
name, corresponding to the I operation), or a different event type to execute (the selection button in
the bottom toolbar, implementing the M operation). When the user focuses on a state, operation M is
dry run on-the-fly to determine which event types are enabled, so that when the event selection button is
pressed only the enabled events can be selected (shown with a green background, as opposed to red for
the disabled ones). In Fig. 2 we can see that after check-in the only options are for the first guest to check
out or enter the room. Unlike in the previous version of the Analyzer, it is now easy to understand that, for
the given scope, the check-in of the second guest must necessarily be followed by an entry or reentry of
the first guest, and there are no other possibilities to breach safety.

To assess the efficiency of the proposed technique, we measured the required time to determine which
M operations are enabled in the different states of the first counter-example returned by the Analyzer.
Table 1 shows the results of this preliminary evaluation for different scopes. The first column (C) shows
the configuration (number of guests and a list with the number of keys per room), the second the time (in
seconds) to compute the first counter-example (T), and then, for each state i, the total time (in seconds) to
compute which event types are enabled (Ti), and the set of enabled events (ai), with the subscript of each
event type identifying the guest involved, and also highlighting the event chosen to be executed in bold.
The evaluation was performed with the bounded model checking engine of Electrum (with the Glucose
SAT solver), with maximum trace length of 10, in a commodity laptop with a 2.3 GHz Intel Core i5 and
16 GB of RAM. As can be seen, only for i = 0 in the last configuration did the solving of all M events
take more than 2s, and in most cases it is in the order of a few hundred ms. Since a user typically needs
some time to understand a state after focusing, this delay is almost always unnoticed. Also, times tend to
decrease as the user advances in the trace: this is to be expected, since a bigger prefix of the trace is fixed,
resulting in a smaller search space for the verification engine.

5 Conclusion

This paper presented a simple technique that allows the user to explore the behaviours that satisfy (or
falsify) an arbitrary temporal logic specification, with an interactive process akin to simulation. A
prototype was implemented in the Electrum Analyzer, and a preliminary evaluation showed its viability in
terms of efficiency. In the future we intend to further improve efficiency by checking which events are

6 Simulation under arbitrary temporal logic constraints

C T T0 a0 T1 a1 T2 a2 T3 a3 T4 a4 T5 a5 · · ·
2[3] 0.07 0.33 I1 0.20 O1E 0.18 I0E 0.22 E1 0.09 R1OE 0.09 R1OE · · ·

2[1,3] 0.06 0.49 I1 0.30 E1O 0.27 O1R 0.23 I0R 0.26 R1 0.11 R1OE · · ·
3[2,3] 0.11 0.75 I2 0.34 O2IE 0.39 I1E 0.35 E2I 0.06 R2IOE 0.07 R2IOE · · ·

3[1,1,4] 0.58 1.24 I2 0.77 O2E 0.62 I1E 0.53 E2O 0.23 R2OE 0.20 R2OE · · ·
4[1,1,6] 1.74 2.30 I3 1.41 O3E 1.10 I2E 0.94 E3O 0.39 R3OE 0.33 R3OE · · ·

Table 1: Performance of the event type enumeration (times in seconds).

enabled in parallel. To show the generality of the technique we intend to apply it to other model checkers,
namely develop a counter-example exploration tool for SMV. Finally, we also plan to conduct a more
detailed evaluation, focusing not only on efficiency, but also on its effectiveness, namely in helping the
user identify truly different counter-examples.

Acknowledgements

This work is financed by the ERDF - European Regional Development Fund - through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 - and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-
0145-FEDER-016826, and the French Research Agency project FORMEDICIS ANR-16-CE25-0007. The
third author was also supported by the FCT sabbatical grant with reference SFRH/BSAB/143106/2018.

References
[1] Julien Brunel, David Chemouil, Alcino Cunha, Thomas Hujsa, Nuno Macedo & Jeanne Tawa (2018): Proposi-

tion of an Action Layer for Electrum. In: Proceedings of the 6th International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z (ABZ), LNCS 10817, Springer, pp. 397–402.

[2] Julien Brunel, David Chemouil, Alcino Cunha & Nuno Macedo (2018): The Electrum Analyzer: Model
checking relational first-order temporal specifications. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE), ACM, pp. 884–887.

[3] Kalou Cabrera Castillos, Hélène Waeselynck & Virginie Wiels (2015): Show Me New Counterexamples: A
Path-Based Approach. In: Proceedings of the 8th International Conference on Software Testing, Verification
and Validation (ICST), IEEE, pp. 1–10.

[4] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina & Nishant Sinha (2004): State/Event-Based
Software Model Checking. In: Proceedings of the 4th International Conference on Integrated Formal Methods
(iFM), LNCS 2999, Springer, pp. 128–147.

[5] Marsha Chechik & Arie Gurfinkel (2007): A framework for counterexample generation and exploration.
International Journal on Software Tools for Technology Transfer 9(5–6), pp. 429–445.

[6] Alma L. Juarez Dominguez & Nancy A. Day (2013): Generating multiple diverse counterexamples for an
EFSM. Technical Report CS-2013-06, University of Waterloo.

[7] Daniel Jackson (2012): Software Abstractions: Logic, Language, and Analysis, 2nd edition. MIT.
[8] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha & Denis Kuperberg (2016): Lightweight

specification and analysis of dynamic systems with rich configurations. In: Proceedings of 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), ACM, pp. 373–383.

[9] Nuno Macedo, Alcino Cunha & Tiago Guimarães (2015): Exploring Scenario Exploration. In: Proceedings of
the 18th International Conference on Fundamental Approaches to Software Engineering (FASE), LNCS 9033,
Springer, pp. 301–315.

Submitted to:
F-IDE 2019

c© E. Kamburjan & J. Stromberg
This work is licensed under the
Creative Commons Attribution License.

Tool Support for Validation of Formal System Models:
Interactive Visualization and Requirements Traceability

Eduard Kamburjan
Department of Computer Science

Technische Universität Darmstadt, Germany
kamburjan@cs.tu-darmstadt.de

Jonas Stromberg
Department of Computer Science

Technische Universität Darmstadt, Germany
jonas.stromberg@stud.tu-darmstadt.de

Development processes in various engineering disciplines are incorporating formal models to ensure
safety properties of critical systems. The use of these formal models requires to reason about their
adequacy, i.e., to validate that a model mirrors the structure of the system sufficiently that properties
established for the model indeed carry over to the real system. Model validation itself is non-formal,
as adequacy is not a formal (i.e., mathematical) property. Instead it must be carried out by the modeler
to justify the modeling to the certification agency or other stakeholders. In this paper we argue that
model validation can be seen as a special form of requirements engineering, and that interactive
visualization and concepts from requirements traceability can help to advance tool support for formal
modeling by lowering the cognitive burden needed for validation. We present the VisualisierbaR
tool, which supports the formal modeling of railway operations and describe how it uses interactive
visualization and requirements traceability concepts to validate a formal model.

1 Introduction

The importance of formal methods for safety-critical systems has long been recognized in many engi-
neering disciplines and is demanded or recommended by certification authorities in, e.g., railway engi-
neering [5] and avionic [29] industries. Recently, with the increasing integration of computational parts
into devices, digital twins [28] and co-simulation [13] are used to develop new products and prototype
changes. One important class of formal methods in this area is formal system modeling.

Under formal system modeling we understand the development of a formal system model of a real
system or of a design of a planned system (short: target system) that mirrors the structure and behavior
of the target system sufficiently to prototype [17] and/or evaluate changes1 [13]. Digital twins are a
variant of this, which are integrated into the target system. Nonetheless, digital twins are based on
a subsystem whose structure they must mirror as close as possible and face the same challenges for
validation. Formal system modeling requires model validation to ensure that properties established for
the formal model hold for the target system: While verification ensures that the model behaves correctly,
validation ensures that the correct thing was modeled. Model validation itself is not formal (in the sense
that it is not a mathematical property), it is an informal process to argue for the adequacy of the model and
bridges between the intention of the developer and the realized model. Validation is required to convince
safety assessors ,such as certification agencies, that formal proofs have value in the certification process
and other stakeholders that the prototypes developed in this model save development time for the target
system.

Our main observation in modeling projects with industry partners is that certain stages of formal
modeling can be seen as a specific form of requirements engineering.

1We contrast formal system modeling with Model-Driven-Development approaches, where the model becomes the final
system through refinement.

2 Tool Support for Validation of Formal System Models

• Requirements elicitation is model scoping. Both these processes turn the implicit knowledge and
assumptions of the user about the domain into an explicit representation. More importantly, they
also decide on the aspects of the domain that are not needed for a specific model/project.

• Requirements traceability is model validation. Both tasks relate parts of the formal system model
to the target system, which are the two main artifacts from requirements engineering view. Instead
of tracing a requirement to the point where it is realized, one traces an aspect to the point where it
is modeled. In reverse, instead of tracing backwards what requirement a part of the implementation
is realizing, one traces what aspect a model-part realizes.

However, formal modeling poses challenges that prevent the straightforward adaption of, e.g., Software
Engineering practices. The boundary between modeling and programming is not clear [4], but con-
cerning validating programs and formal system models of the described kind the main difference is that
model validation of formal system models requires to validate a white-box model (in contrast to a black-
box model when testing a program) and, in particular, raises the following points:
Cognitive Burden. Significant cognitive burden is required to judge formal system models, as formal

modeling languages are not adopted by all industries and there is little training material available.
Even in industries which use formal modeling, keeping the cognitive burden low is a desired aspect
of adopters of formal methods in industry [24] and the cognitive burden of validation is higher than
when designing, e.g., use cases and user stories.

Validating Structure. It is conceptually different to validate the structure of a white-box model, than to
validate the behavior of a black-box model [1]. As formal modeling aims to mirror the structure
precisely enough that changes in the model have the same causal effect as their counterpart in the
target system, merely describing (by, e.g., test cases) the input/output does not suffice. This thwarts
the application of behavior-centric approaches such as Behavior-Driven Development (BDD) [25].

Another experience we make in our work with domain experts is that merely visualizing a formal
system model is not enough when using it to prototype new ideas [17]. Interaction with the visualization
allows even quicker feedback cycles with the domain experts, as it allows them to test a specific situation
for validation with little overhead to induce it into the model. This ties in with the above point of lowering
the cognitive burden to simplify validation.

These observations raise the question how, and what, techniques for requirements traceability and
interactive visualization can be applied to formal modeling. In particular, we are interested in integrating
such techniques into an IDE that helps not only with model verification, but also with model validation.

We illustrate with the VisualisierbaR tool for formal modeling of railway operations how require-
ments traceability can be integrated into a formal methods toolkit and describe future research directions
for formal modeling languages and toolkits.

Our main contribution is to develop tool support for model validation by intergrating requirements
traceability and interactive visualization into an IDE, as well as a tool and a case study illustrating this
idea. This work is structured as follows: Sec. 2 describes model validation in railway operations, Sec. 3
gives an overview over a formal model in this domain, Sec. 4 descirbes the implementation of the
VisualisierbaR tool, Sec. 5 describes the validation features , Sec. 6 gives two case studies from
automatic train operations and rule prototyping and Sec. 7 concludes with related and future work.

2 Validation of Railway Operation Models

We describe our approach using the VisualisierbaR tool developed for the FormbaR model [18] for
German railway operations. This section describes the specification of railway operations and the chal-

E. Kamburjan & J. Stromberg 3

lenges of validating in this domain, while the approach itself is easily generalized to other domains.

2.1 Specification of Railway Operations

Railway operations for German railways are not described by a single document, but by (1) legal regula-
tions, the “Eisenbahn-Bau- und Betriebsordnung” (Law for Operating and Building Railways) [9], (2)
public rulebooks managed by Deutsche Bahn (DB), in particular Ril. 408 [6] and 819 [7], (3) internal
rulebooks for operations, (4) requirements specification for technical elements, (5) training documenta-
tion and (6) internal announcements. FormbaR only considers the operations of DB, but other railway
companies are also bound to the same legal regulations (and to Ril. 408 when using DB infrastructure),
in addition to their own internal rulebooks.

In this environment, procedures are not described algorithmically in one place, but are described in a
distributed manner. This makes it hard to pinpoint the exact point where the procedure is defined. E.g.,
the procedure to depart a train is partially described by Ril. 408 [6], partially by the requirements of
the specific station interlocking in a station, partially by internal announcements and possibly by local
exemptions (“Lokale Zusätze”). Implicitly, building regulations are also referenced, as certain minimal
distances are assumed to hold.

These procedures are subject to constant change and completely new procedures for automatic train
operations (ATO) and ETCS level 3 are in development. When scoping FormbaR, it was decided not to
model certain rules, because they are not relevant to train operations itself but, e.g., specify interactions
with the passengers [18].

2.2 Validating Railway Operation Models

Validation of models of new procedures requires to track each part of the model to the document that
specifies it — legal regulations, rulebooks and technical documents are requirements and model valida-
tion entails documenting that the requirements are met. This is especially critical if these models are
planned to be used for certification.

However, contrary to engineering projects, the form of the requirements is already fixed in a form
that is optimized towards other uses – rulebooks are a form, which is difficult to process and which may
not be changed during development. In terms of characteristics for software requirements [14], they are
neither unambiguous, nor complete or modifiable2. Furthermore, while there is a public specification in
DOORS format available for the new European Train Control System (ETCS) modes of operations, the
other rulebooks are written in plain natural language structured by sections and paragraphs. The use of
technical documents that were not intended to be used as requirements for formal system models is not
specific to railway engineering but is common in other fields, as formal models are mostly developed after
the target system is finished. Similarly using the requirements of the original system can be problematic,
as the formal model then expresses what the system is supposed to do, in contrast to what it really does.
Nonetheless this can be of use, e.g., to analyze the design before implementation.

Not the complete model is directly related to requirements: some parts model basic infrastructure.
E.g., FormbaR contains code for the physical behavior of the train, which is not explicit in any rulebook.
For validation it is important to carefully distinguish between basic infrastructure and other model parts,
since an error in the basic infrastructure is a mistake of the modeler, while an error in the other parts may
hint towards a problem with the target system.

2Arguably, they are also neither consistent nor structured by importance.

4 Tool Support for Validation of Formal System Models

2.3 Validating FormbaR

We use three techniques to validate FormbaR: simulation, interactive visualization and traceability.

Simulation. Simulation runs the model on predefined infrastructures and scenarios and checks that the
behavior is the one expected by the domain expert, e.g., that after a fault on the infrastructure
the train has the expected delay. This roughly corresponds to acceptance testing for software, but
does not scale for bigger scenarios, e.g., because propagation of faults is not easily specifiable or
predictable. Visualization scales better, as it is easier for a human to assess the visualized situation
than to assess (or specify) the expected behavior as a trace.

Interactive Visualization Simulation is only able to detect errors in simple scenarios. A visualization
tool shows the state of the whole infrastructure, e.g., the position of the train or the state of the
signals. Interactive visualization is not merely a representation of the behavior of the system. The
user interacts with the model via the visualization and introduces faults or gives orders to the train.

Interaction extends the use of visualization for validation. First, it is easier for the domain expert
to assess the adequacy of the model if larger parts of the model can be inspected easily. Second, by
interacting with the model he can explore the behavior of the model for questions arising during
the validation. E.g., to check whether a certain combination of faults has been modeled correctly,
when the interactions of faults is scattered in the model.

Requirements Traceability Simulation and interactive visualization treat the model as a black box and
merely ensure that the behavior of the model corresponds to the expectations of the domain expert
in a number of situations. To ensure that the internal structure of the model mirrors the internal
structure of the domain we annotate the model and the visualization with links to the text files
containing the specification.

Requirement links trace a requirement either forward (answering “where is this requirement real-
ized?”) or backward (answering “what requirement does this code realize?”). Similarly, annota-
tions are two-directional. A section of a rulebook links to the code in the model that implements it
(i.e., is a forward trace link) and the code links to the rulebook it implements (i.e., is a backwards
trace link). Links between model and specification are not enough, as the code may still implement
a procedure that is a described in several places. Visualization allows us to output messages that
also contain links to the specification, to connect these representation without explicitly invok-
ing the model. These links serve two purposes: First, they enable us to track in the visualization
whether the procedure is executed correctly (i.e., according to specification). Second, they ensure
that the visualization, which is an additional abstraction layer/artifact (additionally to rulebooks
and formal model) is integrated into the validation of the formal model.

3 ABS and the FormbaR Model

In this section we give a short overview over the Abstract Behavioral Specification (ABS) language [15]
and the FormbaR [18] model of railway operations. For brevity’s sake, we only introduce ABS and
FormbaR as far as needed to explain VisualisierbaR; an introduction to ABS can be found in [15], an
extended description of FormbaR in [18].

E. Kamburjan & J. Stromberg 5

3.1 Abstract Behavioral Specification

ABS is a modeling language, developed for the modeling, simulation and analysis of distributed sys-
tems. ABS models are executable, yet it is not a programming language in this context: its foremost
use is to mirror the structure of the target system, not its computational results. Its conceptual closeness
to programming languages, however, allows us to demonstrate the use of requirements traces more suc-
cinctly. Most constructs of ABS are standard and its syntax is based on Java, with additional statements
for concurrency. We introduce the data, communication and time models of ABS.

Data and Communication Model. ABS models data and behavior in two sublanguages. Data, and
operations on the data, is modeled in a functional sublanguage based on abstract data types (ADTs). As
an example, the following defines an ADT modeling the state of a (logical) signal:

data State = GO | HALT | SLOW | INVALID;

Behavior and communication is modeled in an object-oriented language on top of the functional
sublanguage. The object model uses classes and interfaces and is based on Java, but all fields are object-
private. Additionally, traits may be used to add methods to a class. The following class models a Zs10
auxiliary signal (end of speed limitation).

1 [Concept:"Zs10"] class Zs10(Edge track, String name) {

2 uses NoSig adds NoBack adds Nameable;

3 List<Trans> trigFront(Train t, Edge e){

4 Information info = NoInfo;

5 if(e == track)

6 info = AreaEnd(-1, False, null);
7 return list[Pass(info)];

8 }

9 }

The class Zs10 has two fields (track and name) and uses three traits (NoSig, NoBack, Nameable).
It has one additional method, that transmits AreaEnd if the train passes the Zs10 auxiliary signal from
the direction where it is visible. The types Trans for transmissions and Information for transmitted
information are ADTs.

Simulation, Time and Model API. FormbaR uses Timed ABS [3], which extends ABS with explicit
operations on time. The statement await duration(x,y) suspends the current process for at least x to y

simulation time steps. At runtime, the shortest possible time is chosen. In FormbaR, a simulation time
step corresponds to one second.

ABS can be compiled into, among other languages, Erlang and then be executed. The compiled
executable contains a runtime environment in Erlang, that implements the above concurrency model and
keeps track of the symbolic time — the global symbolic clock is only advanced if every object is waiting
for time to pass. The clock is then advanced by the minimal time that unlocks some object.

3.2 The FormbaR model of Railway Operations

The FormbaR model is centered around the notion of points of information flow, which are the basic
infrastructure of the formal model and are not specified by the rulebooks.

6 Tool Support for Validation of Formal System Models

Switch

PoV
Pre Signal
Magnet Magnet

Main Signal
Magnet PoD

PoD

Logical Signal

Topology
Layer

Physical
Element
Layer

Logical
Element
Layer

 PoV = Point of latest possible visiblity
 PoD = Point of danger

Figure 1: The lower three layers of a station entry, with a logical entry signal and a switch. (From [18])

Definition 1. A Point of Information Flow (PIF) is an object at a fixed position on a track, where one of
the following applies:

• It is an infrastructure element transmitting information to trains (e.g., balises)

• It is in some critical distance to an infrastructure element (e.g., the point where the presignal is
seen at the latest)

• It is an infrastructure element, which receives information from trains

PIFs allow one to discretize the infrastructure from an operational perspective, as the physical be-
havior of the train can be interpolated between two PIFs. FormbaR is also able to handle state changes of
trains between two PIFs, e.g., because of orders or if the train comes to a halt before a signal. However,
for the most time during simulation, the train behaviors must only be adjusted at PIFs and simulation is
thus less time-consuming.

3.3 Infrastructure

The infrastructure model is based on a graph, where the nodes form the base for a four-layer model of
the infrastructure. At each node of the graph, PIFs may exist and the edge has the length of the track in
between two nodes.

This topological graph forms layer 1 and contains all information about physical distances. Layer 2
is a set of physical elements assigned to a node, e.g., presignals, main signals, etc. Furthermore, layer 2
is the view of the train driver on the infrastructure, who has to react to these elements. Layer 3 consists
of logical elements. A logical element is a set of physical elements, which share state or interface to
the interlocking system. This layer is the view of the train dispatcher on the infrastructure, as it is not
possible to, e.g., change the state of the main signal without changing the state of the presignal. A
physical element may be assigned to multiple logical elements (e.g., a presignal may belong to multiple
logical signals) or none (e.g., a buffer stop).

Fig. 1 shows the entry to a train station. The black elements constitute one logical signal, the entry
signal of the station: The point of visibility, where the presignal is seen at the latest, the presignal itself,
the main signal, three magnets of the automatic train protection system PZB and two point of danger
which are covered by the signal (e.g., axle counters). VisualisierbaR has basic CAD features to
create and manipulate infrastructure.

E. Kamburjan & J. Stromberg 7

.abs
files

REST API

Executable
.zug
file

Visualization/
ABS Editor

compiled into outputs

modifies state of running model

modifies code of model

read by

Figure 2: Overview over the components in the implementation

3.4 Communication of Stations and Trains

Stations manage a set of logical elements and communicate only with their logical elements and adjacent
stations. Trains only communicate with the lowest layer of the infrastructure, the graph. The nodes relay
all the transmissions from the physical elements on them to the train. Trains and stations communicate
directly only via orders and only in case of faults, not during normal operations.

4 Implementation and Interaction

In the following sections we describe VisualisierbaR, an IDE that implements the principles of
the previous section and illustrates prototyping of railway operation procedures. The interface has
three components: an ABS IDE for the model, a PDF viewer for the rulebooks and a visualization.
VisualisierbaR is designed for a multi-monitor working place, due to the space requirements of the
visualization of the simulation. First, we describe the architecture of the implementation and the possi-
bilities to interact with the model in VisualisierbaR.

4.1 Implementation

To start the simulation, the following workflow is implemented: The ABS compiler first generates Er-
lang code and then compiles Erlang to an executable file. The executable outputs a .zug file. This
file contains a list of all FormbaR events that are needed for the visualization and acts as the interface
between visualization and the model. It also allows to replay an execution without having the ABS
code. The format is a list of events, e.g., the following is a main signal with the internal Erlang identity
TrackElements.HauptSignalImpl:<0.581.0> changing its state to “Go”(Fahrt) at 459/8s.

CH; TrackE lemen t s . H a u p t S i g n a l I m p l : <0.581.0 > ;FAHRT; 4 5 9 / 8

Additionally, the executable contains a web server running a RESTful API [30] to query the object
state, call methods from the outside and to limit the clock. By limiting the clock, it is possible to start
the executable, read (and visualize) the output up to a certain time step and then interact with the model
by calling methods via the RESTful API. Afterwards, one may resume the execution for some fixed time
span by increasing the limit of the clock. VisualisierbaR requires that the ABS project consisting from
*.abs files and a scenario are selected. It automatically compiles the model and starts the executable. We
use two kinds of interactions from VisualisierbaR, which are illustrated by the two cycles in Fig. 2.

4.2 Interaction with Running Model

Interaction with the running model is the inner cycle in Fig. 2. As described, the web server allows us to
interact with an already running model by invoking exposed methods. In the visualization, each physical

8 Tool Support for Validation of Formal System Models

element displays the interactions. An interaction is a method which is exposed by an [HTTPCallable]

annotation in the interface of the class.
The RESTful API is used to read the list of exposed methods and allows to easily add methods as new

interactions (at compile time). When the simulation is halted, these methods may be called to change
the current state and alter the following steps in the simulation. In principle, the model must not be
halted for the interactions, however FormbaR does not adjust simulation and wall time, to interact on a
precise point in time, one thus needs to simulate up to this point, interact, and continue simulation. These
interactions are available for trains and physical elements, which may however propagate the interaction
to their currently responsible train station, resp. logical element.

4.3 Interaction with ABS Code

Interaction with the ABS code is the outer cycle in Fig. 2. VisualisierbaR contains an IDE for ABS,
which allows to run the simulation, visualize it and then directly modify the ABS model. This allows
visual debugging of railway operations, where certain situations can be modeled as the infrastructure and
then directly checked whether the new (or modified) procedure behaves as intended. After modifying the
code, the model is recompiled and re-executed.

To support this interaction, it is necessary to provide a way to link the visualization with two parts
of the ABS code: First, the infrastructure that is currently active and second, the part of the procedure
that is executed. This connection falls under contextualization, which does not only provide the context
of rulebooks for the ABS model, but also the context of the ABS model for the visualization. When
modifying the infrastructure, the complete initialization block of the scenario if generated anew.

5 Using VisualisierbaR for Validation

In this section we describe the use of VisualisierbaR for validation. First, we describe the visualiza-
tion.

5.1 Visualization

Modes. VisualisierbaR can be started in three modes. If VisualisierbaR is started in Visual-
ize/Edit mode, then the code of the ABS model and the visualization of the simulation are shown. The
scenario can be edited, the simulation can be rerun and the contextual documents can be displayed. If
VisualisierbaR is started in Interactive mode, then the visualization of the simulation is shown. The
simulation, however, is not run yet. Instead the visualization offers the opportunity to either interact
with the halted simulation (e.g., to inject faults by breaking signals or to give orders to a train) or decide
to continue for a certain time frame. The ABS model and contextual documents can be displayed, but
the scenario can not be edited. In these two modes, the root directory of the ABS model and the chosen
scenario have to be selected. Finally, the Replay mode allows to visualize .zug files without ABS model.

A detail of the visualization of railway operations is shown in Fig. 3. This window offers, beyond
visualization itself, the ability to interact with the model and can be used as an editor, that offers standard
computer aided design (CAD) features: adding, editing, copying and deleting nodes, edges and physical
elements. It is also possible to manage logical elements. If the ABS model is changed, the model is
recompiled and the visualization shows the rerun scenario.

Window A.2 shows the details of a train or element, if one is selected. For physical elements,
properties such as position and its logical element are displayed. For trains, additionally to the properties,

E. Kamburjan & J. Stromberg 9

the v-t and other graphs are shown. In interactive mode, A.2 also contains the possible interactions with
the selected element or train. Optionally, a window with the list of FormbaR-events can be opened. There
are 3 possibilities to advance the simulation:

• by manually selecting a point in time or event,

• by traversing the list of events automatically at a fixed rate events/second,

• by traversing the list of events automatically at a fixed speed. In this case the position of trains
between two nodes is interpolated.

In any case it is possible to go back in time and review a part of the simulation. It is however only
possible to interact with the current (i.e., newest) state.

Interaction is realized through a RESTful API [30] embedded in the ABS executable that allows to
call methods from the outside and to limit the clock. The executable outputs *.zug files, which are read
by the visualization. Reading these files allows one to replay an execution without needing the ABS
code, which simplifies sharing.

A. A.1 A.2

Figure 3: Window A: Visualization. The green train is about to enter the station on the bottom right, the
entry signal shows “Go”. Window A.2 shows the v-t diagram and other information about the train.

5.2 Requirements Traces

The links between the components are illustrated in Fig. 4:

Documents to ABS By selecting a part of the rulebook that is linked from the code, the linking code,
i.e. the annotated element, can be highlighted.

ABS to Visualization Objects are highlighted in the visualization, if their object creation site (their new
expression) is selected in the ABS editor.

Visualization to Documents The visualization allows us to show explaining text for the simulation.
These messages may contain the annotations to the rulebooks.

Visualization to ABS The object creation sites of elements selected in the visualization are highlighted
in the editor.

ABS to Documents The ABS code allows us to directly link to the rulebooks from the code via annota-
tions. The relevant part of the rulebook is then highlighted.

10 Tool Support for Validation of Formal System Models

The first two links implement forward tracing, the others implement backward tracing. The links between
ABS and documents support n-m relations – if a part of the document is modeled in several points of the
code, a window allows to select one. The following sections illustrate the trace links in more detail.

ABS Model

Documents

Visualizationobject creation sites

ann
ota

tion
s links in output

Figure 4: Structure of trace links in VisualisierbaR.

Visualization. The visualization provides context in two ways: (1) when selecting an element, window
A highlights the statement responsible for the creation of this element. This link is used to trace an
element in the visualization to a point in the model. (2) Additionally, special MSG-events in the *.zug

files are supported: These events are shown as pop-ups and visualize non-visible state changes (e.g.,
message exchange between train and station). An MSG-event may contain annotations to link to contextual
documents. This link traces a point in the execution of a model to a rulebook/requirement.

ABS Model. The ABS model is shown in window B in Fig. 5. ABS is a modeling language with a
Java-style syntax and is presented similar to mainstream programming languages in the IDE.

In window B a file browser shows the different code files (B.1), while the main part (B.2) allows one
to view and manipulate a single ABS file. B.2 offers standard IDE features like syntax highlighting or
jumping to definitions.

Specific to VisualisierbaR are two features that provide contextualization:

I In the scenario setup in file Run.abs, each created element can be clicked on and is then highlighted
in the visualization (window A). This link is used to trace a part of the model to the visualization.

II Each class and method can be annotated with [Document:Y], where Y is a rulebook identifier (e.g.,
“Ril. 408.0615”) the name of a concept or a keyword, (e.g., “Main Signal”). A click on such annota-
tions highlights the document part in the document window (window C) marked with this identifier
(in case of [Document:Y] or a window that lists all document parts responsible for the keyword (in
case of [Concept:X]). This link is used to trace a part of the model to the rulebook/requirement. If
a concept is linked to multiple parts of the rulebooks, the user can select one of them. The mapping
between annotated concept and rulebook sections are manually managed in a .csv file that allows
n-m relations and is a variant of a requirement matrix between code and rulebooks.

The IDE offers a way to modify the code and recompile. After recompilation, window B.2 is split into
two panes, where the left shows the current code and the right the code of the model before compilation
to simplify tracking of changes.

Documents. Window C is a PDF viewer which highlights parts of the document if referenced from the
other components. It provides context in two ways. When a part of the document is clicked on and this
part of the document is referenced from the model, a list of all annotation referring to it is shown. This
list then highlights the annotation in window B.2. This link is used to trace a requirement to the model.

E. Kamburjan & J. Stromberg 11

Figure 5: Excerpt of Window B: ABS editor. The different backgrounds visualize infrastructure selected
in window A.

Fig. 6 shows the PDF viewer. The bars on the left mark the referenced parts of the documents. The
window on the right is displayed when a part of the document is clicked on and lists all references in the
ABS code to it. A list of all references can be shown in the ABS editor.

6 Validation Case Studies for ATO and Prototyping

We give two examples how VisualisierbaR can be used in the workflow of rulebook authors. The
first example is from the on-going development of new procedures for autonomous train operations [31],
where VisualisierbaR was applied to check that the new rules correctly interact with the old rules
for non-autonomous train operations. The second example models the change of a rule. Followine real
world changes [27], we model the effects on delays, depending on whether the first train after a fault has
occurred drives on sight or not.

6.1 Validating ATO Procedures

We give an example where VisualisierbaR is used in the current development of a system to handle
faults during autonomous train operations (ATO) with grade of autonomy (GoA) 4 [31] to analyze how
the additional checks needed for ATO interact with the operational rules. In this case, the requirements
are the developed procedures for ATO GoA 4 and their correct interactions with the original rules.

The investigated scenario was an obstacle in front of a signal, where the autonomous train adheres to
the rules specific to GoA 4 (detecting the obstacle and waiting for it to disappear) as well as to the rules
for general operations (responding to the signal). The model has to realize both rulebooks.

The decisions necessary for ATO are annotated with links to the ATO documentation and the already
existing model for general operations with links to the rulebooks. To connect the model with the visual-
ization, we added messages and used the following scenario: A train is driving towards a signal and an

12 Tool Support for Validation of Formal System Models

Figure 6: Window C: PDF viewer

obstacle, e.g., a cow, is directly before the signal. The signal signals “Halt”. ATO GoA 4 adds the rule
that a train halts before any detected obstacle.

Trace links are able to enhance validation through simulation by tracing certain execution steps back
to the original procedures. Simulating the scenario shows that the train detects the cow and halts until
the cow leaves the track, even if the signal switches to “Go”. Similarly, if the cow leaves and the signal
is still signaling “Halt”, the train waits. At each point, the simulation displays the decisions of the ATO
algorithms, e.g., if the obstacle is not detected anymore it is displayed why the system decided to halt.

This allows us to check that rules for ATO GoA 4 do not override rules for normal train driving or
otherwise interfere with them. From a development process view, the simulation itself is a behavioral
test that links its output with the requirements and the annotations are links for requirements traces.

6.2 Prototyping Rule Changes

To reason about the effects of a proposed rule change, VisualisierbaR was first used to model a
variant of the infrastructure in the west branch of the Frankfurt City Tunnel. This branch has a length of
4.7km and is the main part of the Rhein-Main S-Bahn – eight lines pass through it, with intervals below
five minutes. Its high usage makes it representative of how rules affect operations in networks with high
occupancy rate and short distances between signals. We only model one direction (from Hauptbahnhof to
Südbahnhof) without the branch-off point Schlachthof, which is sufficient for the analyzed rule change.

On the infrastructure two trains with a 5 minutes interval are simulated, both with a maximal velocity
of 60km/h. We model the following scenario: the main signal on the track between Ostendstraße and
Lokalbahnhof3 has a fault that is local to this signal (e.g., a broken bulb). To sustain operations, the train
dispatcher gives an order to depart (equivalent to a Zs1 auxiliary signal) nonetheless.

Old rule. The train dispatcher must not order to drive on sight, thus the first train can still drive the
full 60km/h. In this case the second train, which departs at t = 300s, arrives in the final station at
t = 1027s.

3This block was chosen because it has the shortest sight distance and requires the slowest speeds when driving on sight.

E. Kamburjan & J. Stromberg 13

New rule. Now, the train must first drive on sight, which is walking speed in tunnels (6 km/h). In this
case the second train (which is not effected by this and may drive 60km/h) arrives at the final
station at t = 1487s.

The delay, over 7 minutes4 is specific to this infrastructure and time table, yet gives an estimate which
helps the developers to assess the impact of a rule change. Another example to examine rule changes
with FormbaR is discussed in [18]. VisualisierbaR is an improvement over the previous ad-hoc
visualization, as it allows to assess the relevant information faster by showing the v-t graph.

This application of VisualisierbaR was presented to the rulebook authors of DB Netz responsible
for this rule, who deemed the visualization and the trace links as helpful.

7 Conclusion and Future Research

We presented VisualisierbaR and have shown how it can be integrated into the processes for devel-
oping railway operation procedures. It illustrates how model validation can be supported by integrating
requirement traces and how these traces increase the usefulness of tests and visualization. It extends
our previous work on modeling these procedures by giving an interface that does not require the user to
learn ABS to use the model, but gives him the possibility for deeper manipulation with ABS if neces-
sary. VisualisierbaR extends the use cases of formal tools in railway engineering from support for
implementation and planning [8, 12] to the development of new procedures by using an ABS model to
prototype ATO procedures. Beyond railway engineering, we addressed the challenge to use technical
documents as requirements for validation, which are not designed to be used as requirements and are not
modifiable by the modeler.

VisualisierbaR is available under formbar.raillab.de/visbar with limited annotations, as
most rulebooks and the rules for the above ATO case study are not public. A video demonstrating the
usage of VisualisierbaR is available under https://figshare.com/s/71f1c2e7252bfd032f57.

It is often observed that formal models offer a benefit for the designer, even without analyzing formal
properties, as it forces to clarify all ambiguities. Thus, formal modeling languages must not only be
easy to analyze, but also easy to validate and easy to integrate into existing development processes.
Yet, validation of formal system models and its place in development processes remains a challenging
domain. For future work, we are not only interested in the integration of validation of formal models
into a development process, but the development process of formal models and digital twins itself. In
particular, we are interested in the following:

• Requirement trace generation for formal modeling.

• Integration of conceptual modeling [26] into formal model validation by connecting requirements
and formal model with a domain ontology5.

The overarching questions are (1) how to design formal modeling languages (and IDEs for them) which
are not only easily usable and analyzable, but also easy to validate and (2) how to use traceability in
verified formal models for certification. We propose that automatic generation of traces would not only
vastly simplify validation, but also be a step towards a wider acceptance of formal proofs for certification.

4This is longer than the delay caused purely by waiting (3 minutes) for the first train to arrive, but still realistic. The
additional 4 minutes are caused by a non-optimal train dispatching in our model. However, the duties of the train dispatcher to
document the situation and give written orders in case of faults accounts for this.

5Conceptual modeling faces similar problems with validation, but is more abstract in the information it captures and relies
more on implicit knowledge, than specifications, designs or a concrete existing system.

14 Tool Support for Validation of Formal System Models

Related Work Luteberget et al. [22] use traces to link errors raised during verification to the respon-
sible part of the model and the original document. These traces roughly resemble the annotations in
messages generated by VisualisierbaR during simulation, but are not used to validate the model itself.
Ferrari et al. [10] investigated the requirements of railway engineering projects from a natural language
processing perspective. Concerning the connection of conceptual and formal modeling, Kharlamov et
al. [20] propose to use ontologies to develop digital twins, but not for validation.

Fischer and Dghaym [11] use acceptance tests to validate a formal model of Hybrid ETCS L3 seg-
ments. Contrary to requirement traces and interactive visualization their approach requires fully formal-
ized test cases of observable behavior of the model. This approach is not only subsumed by simulation
– as discussed, it also does not lower the cognitive burden of validation, as these test cases are a formal
behavioral model themselves.

Integration of multiple aspects is common for programming languages in mainstream IDEs, but
development environments based on formal methods focus mostly only on the formal model and its
verification, e.g., by an interface to the proof system. E.g., the B-OVADO [12] tool for the PERF [2]
approach, offers a toolbox for data validation tasks that integrates B as a language to specify data. The
Sphinx tool [23], which integrates verification and modeling tools for model-based engineering of hy-
brid systems, is the only approach that uses formal methods for coordinating multiple components for
development. It also provides a way to connect to documentation in a special UML profile and is specific
to differential dynamic logic. Ladenberger [21] also investigated interaction for validation of B-models.

Future Work Beyond further research in the connection to requirements engineering sketched above,
we plan (1) to enable statistical analyses, such as expected lost units [19] after a rule change, in a repre-
sentative network and (2) to integrate our verification approach [16] to use it for certifications. We also
plan to investigate how, analogous to Domain Specific Languages, Domain Specific IDEs, can be used
to integrate formal methods into other domains.

Acknowledgments This work is supported by the FormbaR project, part of AG Signalling/DB RailLab.
We thank Heike Villioth-Ebert, Armin Krieger, Matthias Kopitzki and Bilal Üyümez for their feedback.

References

[1] Y. Barlas. Formal aspects of model validity and validation in system dynamics. System Dynamics Review -
SYST DYNAM REV, 12, 09 1996.

[2] N. Benaissa, D. Bonvoisin, A. Feliachi, and J. Ordioni. The PERF approach for formal verification. In
T. Lecomte, R. Pinger, and A. Romanovsky, editors, RSSRail 2016 proc., pages 203–214, Cham, 2016.
Springer International Publishing.

[3] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. User-defined schedulers for
real-time concurrent objects. ISSE, 9(1):29–43, 2013.

[4] M. Broy, K. Havelund, R. Kumar, and B. Steffen. Towards a unified view of modeling and programming
(track introduction). In T. Margaria and B. Steffen, editors, ISoLA, pages 3–21. Springer, 2018.

[5] CENELEC. DIN EN 50128:2011, Railway applications – Communication, Signalling and Processing Sig-
nals, 2011.

[6] DB Netz AG, Frankfurt, Germany. Richtlinie 408, Fahrdienstvorschrift, 2017.

[7] DB Netz AG, Frankfurt, Germany. Richtlinie 819, LST-Anlagen planen, 2017.

E. Kamburjan & J. Stromberg 15

[8] S. Dillmann and R. Hähnle. Automated planning of ETCS tracks. In RSSRail, volume 11495 of Lecture
Notes in Computer Science, pages 79–90. Springer, 2019.

[9] Eisenbahnbundesamt (Federal Railway Authority). Eisenbahn-bau- und betriebsordnung, 2017. April 2017:
https://www.gesetze-im-internet.de/ebo/index.html.

[10] A. Ferrari, G. Gori, B. Rosadini, I. Trotta, S. Bacherini, A. Fantechi, and S. Gnesi. Detecting requirements
defects with NLP patterns: an industrial experience in the railway domain. Empirical Software Engineering,
23(6):3684–3733, 2018.

[11] T. Fischer and D. Dghaym. Formal model validation through acceptance tests. In RSSRail 2019, volume
11495 of Lecture Notes in Computer Science, pages 159–169. Springer, 2019.

[12] M. Fredj, S. Leger, A. Feliachi, and J. Ordioni. OVADO - enhancing data validation for safety-critical railway
systems. In A. Fantechi, T. Lecomte, and A. B. Romanovsky, editors, RSSRail 2017 proc., volume 10598 of
LNCS, pages 87–98. Springer, 2017.

[13] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. Co-simulation: State of the art. CoRR,
abs/1702.00686, 2017.

[14] IEEE. IEEE guide for software requirements specifications. IEEE Std 830-1998, 1998.
[15] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language for abstract behav-

ioral specification. In FMCO, volume 6957 of LNCS. Springer, 2010.
[16] E. Kamburjan and R. Hähnle. Deductive verification of railway operations. In RSSRail 2017, volume 10598

of Lecture Notes in Computer Science, pages 131–147. Springer, 2017.
[17] E. Kamburjan and R. Hähnle. Prototyping formal system models with active objects. In Interaction and

Concurrency Experience, volume 279 of EPTCS, pages 52–67. Open Publishing Association, 2018.
[18] E. Kamburjan, R. Hähnle, and S. Schön. Formal modeling and analysis of railway operations with active

objects. Science of Computer Programming, 166:167 – 193, 2018.
[19] F. R. Kämmerer. Entwicklung eines Kennzahlensystems für Effektivität des Bahnbetriebs bei Abweichungen

vom Regelbetrieb. Master’s thesis, Technische Universität Darmstadt, 2017.
[20] E. Kharlamov, F. Martin-Recuerda, B. Perry, D. Cameron, R. Fjellheim, and A. Waaler. Towards semantically

enhanced digital twins. In 2018 IEEE International Conference on Big Data, pages 4189–4193, 2018.
[21] L. Ladenberger. Rapid Creation of Interactive Formal Prototypes for Validating Safety-Critical Systems. PhD

thesis, University of Düsseldorf, Germany, 2017.
[22] B. Luteberget, J. J. Camilleri, C. Johansen, and G. Schneider. Participatory verification of railway infrastruc-

ture by representing regulations in RailCNL. In SEFM, volume 10469 of LNCS. Springer, 2017.
[23] S. Mitsch, G. O. Passmore, and A. Platzer. Collaborative verification-driven engineering of hybrid systems.

Mathematics in Computer Science, 8(1):71–97, 2014.
[24] C. Newcombe. Why Amazon chose TLA + . In Y. Ait Ameur and K.-D. Schewe, editors, Abstract State

Machines, Alloy, B, TLA, VDM, and Z, pages 25–39, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
[25] D. North. Introducing BDD, 2006. http://dannorth.net/introducing-bdd/.
[26] A. Olivé. Conceptual Modeling of Information Systems. Springer-Verlag, Berlin, Heidelberg, 2007.
[27] J. Pachl. Das Ersatzsignal – ein deutscher Sonderweg? Deine Bahn, 3, 2018. In German.
[28] R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen. About the importance of autonomy and digital

twins for the future of manufacturing. IFAC-PapersOnLine, 48(3):567 – 572, 2015.
[29] RTCA Inc, EUROCAE. DO-178C, 2012.
[30] R. Schlatte, E. B. Johnsen, J. Mauro, S. L. Tapia Tarifa, and I. C. Yu. Release the Beasts: When Formal

Methods Meet Real World Data, pages 107–121. Springer International Publishing, Cham, 2018.
[31] B. Üyümez. Modellierung des Steuerungsprozesses der Rückfallebenen als Grundlage für die Automa-

tisierung. Eisenbahntechnische Rundschau, 4 2018. In German.

96

Author Index

Ahrendt, Wolfgang 1

Bessai, Jan 2
Brunel, Julien 66

Chemouil, David 66
Cousineau, Denis 8
Cunha, Alcino 66

Inoue, Hiroaki 8

Kamburjan, Eduard 72
Kuppe, Markus Alexander 51

Macedo, Nuno 66
Masci, Paolo 36
Mentré, David 8
Mosses, Peter 30
Munoz, Cesar 36

Roidl, Moritz 2

Stromberg, Jonas 72

Tuong, Frédéric 14

Vasileva, Anna 2

Wolff, Burkhart 14

97

