CSL18: COMPUTER SCIENCE LOGIC 2018
PROGRAM FOR TUESDAY, SEPTEMBER 4TH
Days:
next day
all days

View: session overviewtalk overview

09:00-10:00 Session 1

Invited talk

Chair:
09:00
Fixed Points in Information Flow and in Privacy
10:30-12:30 Session 2

Contributed talks

Chair:
10:30
Dependency Concepts up to Equivalence

ABSTRACT. Modern logics of dependence and independence are based on different variants of atomic dependency statements (such as dependence, exclusion, inclusion, or independence) and on team semantics: a formula is evaluated not with a single assignment of values to the free variables, but with a set of such assignments, called a team.

In this paper we explore logics of dependence and independence where the atomic dependency statements cannot distinguish elements up to equality, but only up to a given equivalence relation (which may model observational indistinguishabilities, for instance between states of a computational process or between values obtained in an experiment).

Our main goal is to analyse the power of such logics, by identifying equally expressive fragments of existential second-order logic or greatest fixed point logic, with relations that are closed under the given equivalence. Using an adaptation of the Ehrenfeucht-Fraisse method we further study conditions on the given equivalences under which these logics collapse to first-order logic, are equivalent to full existential second-order logic, or are strictly between first-order and existential second-order logic.

11:00
The True Concurrency of Herbrand's Theorem

ABSTRACT. Herbrand's theorem, widely regarded as a cornerstone of proof theory, exposes some of the constructive content of classical logic. In its simplest form, it reduces the validity of a first-order purely existential formula to that of a finite disjunction. More generally, it reduces first-order validity to propositional validity, by understanding the structure of the assignment of first-order terms to existential quantifiers, and the causal dependency between quantifiers.

In this paper, we show that Herbrand's theorem in its general form can be elegantly stated and proved as a theorem in the framework of concurrent games, a denotational semantics designed to faithfully represent causality and independence in concurrent systems, thereby exposing the concurrency underlying the computational content of classical proofs. The causal structure of concurrent strategies, paired with annotations by first-order terms, is used to specify the dependency between quantifiers. Furthermore concurrent strategies can be composed, yielding a compositional proof of Herbrand's theorem, simply by interpreting classical sequent proofs in a well-chosen denotational model.

11:30
Quantifying Bounds in Strategy Logic

ABSTRACT. Program synthesis constructs programs from specifications in an automated way. Strategy Logic (SL) is a powerful and versatile specification language whose goal is to give theoretical foundations for program synthesis in a multi-agent setting. One limitation of Strategy Logic is that it is purely qualitative. For instance it cannot specify quantitative properties of executions such as "every request is quickly granted", or quantitative properties of trees such as "most executions of the system terminate". In this work, we extend Strategy Logic to include quantitative aspects in a way that can express bounds on "how quickly" and "how many". We define Prompt Strategy Logic, which encompasses Prompt LTL (itself an extension of LTL with a prompt eventuality temporal operator), and we define Bounded-Outcome Strategy Logic which has a bounded quantifier on paths. We supply a general technique, based on the study of automata with counters, that solves the model-checking problems for both these logics.

12:00
Canonical Models and the Complexity of Modal Team Logic

ABSTRACT. We study modal team logic MTL, the team-semantical extension of classical modal logic closed under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability problem of full MTL has been notoriously resistant to a complexity theoretical classification. In our approach, we adapt the notion of canonical models for team semantics. By construction of such a model, we reduce the satisfiability problem of MTL to simple model checking. Afterwards, we show that this method is optimal in the sense that MTL-formulas can efficiently enforce canonicity. Furthermore, to capture these results in terms of computational complexity, we introduce a non-elementary complexity class, TOWER(poly), and prove that the satisfiability and validity problem of MTL are complete for it. We also show that the fragments of MTL with bounded modal depth are complete for the levels of the elementary hierarchy (with polynomially many alternations).

14:00-16:00 Session 3

Contributed talks

Chair:
14:00
Local validity for circular proofs in linear logic with fixed points

ABSTRACT. Circular (ie. non-wellfounded but regular) proofs received increasing interest in recent years with the simultaneous development of their applications and meta-theory: infinitary proof theory is now well-established in several proof-theoretical frameworks such as Martin Löf's inductive predicates, linear logic with fixed points, etc.

In the setting of non-wellfounded proofs, a validity criterion is necessary to distinguish, among all infinite derivation trees (aka. pre-proofs), those which are logically valid proofs. A standard approach is to consider a pre-proof to be valid if every infinite branch is supported by a progressing thread.

The paper focuses on circular proofs for MALL with fixed points. Among all representations of valid circular proofs, a new fragment is described, based on a stronger validity criterion.

This new criterion is based on a labelling of formulas and proofs, whose validity is purely local.

This allows this fragment to be easily handled, while being expressive enough to still contain all circular embeddings of Baelde's \muMALL finite proofs with (co)inductive invariants: in particular deciding validity and computing a certifying labelling can be done efficiently. Moreover the Brotherston-Simpson conjecture holds for this fragment: every labelled representation of a circular proof in the fragment is translated into a standard finitary proof.

Finally we explore how to extend these results to a bigger fragment, by relaxing the labelling discipline while retaining (i) the ability to locally certify the validity and (ii) to some extent, the ability to finitize circular proofs.

14:30
Quantitative Foundations for Resource Theories
SPEAKER: Dan Marsden

ABSTRACT. Considering resource usage is a powerful insight in the analysis of many phenomena in the sciences. Much of the current research on these resource theories focuses on the analysis of specific resources such quantum entanglement, purity, randomness or asymmetry. However, the mathematical foundations of resource theories are at a much earlier stage, and there has been no satisfactory account of quantitative aspects such as costs, rates or probabilities.

We present a categorical foundation for quantitative resource theories, derived from enriched category theory. Our approach is compositional, with rich algebraic structure facilitating calculations. The resulting theory is parameterized, both in the quantities under consideration, for example costs or probabilities, and in the structural features of the resources such as whether they can be freely copied or deleted. We also achieve a clear separation of concerns between the resource conversions that are freely available, and the costly resources that are typically the object of study. By using an abstract categorical approach, our framework is naturally open to extension. We provide many examples throughout, emphasising the resource theoretic intuitions for each of the mathematical objects under consideration.

15:00
An application of parallel cut elimination in unit-free multiplicative linear logic to the Taylor expansion of proof nets

ABSTRACT. We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose some constraint on switching paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction.

Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfy our constraints.

In the present work, we stick to the unit-free and weakening-free fragment of linear logic, which is rich enough to showcase our techniques, while allowing for a very simple kind of constraint: a bound on the number of cuts that are crossed by any switching path.

15:30
Combining Linear Logic and Size Types for Implicit Complexity

ABSTRACT. Several type systems have been proposed to statically control the time complexity of lambda-calculus programs and characterize complexity classes such as FPTIME or FEXPTIME. A first line of research stems from linear logic and restricted versions of its !-modality controlling duplication. A second approach relies on the idea of tracking the size increase between input and output, and together with a restricted recursion scheme, to deduce time complexity bounds. However both approaches suffer from limitations : either a limited intensional expressivity, or linearity restrictions. In the present work we incorporate both approaches into a common type system, in order to overcome their respective constraints. Our system is based on elementary linear logic combined with linear size types, called sEAL, and leads to characterizations of the complexity classes FPTIME and 2k-FEXPTIME, for k >= 0.

16:30-18:30 Session 4

Contributed talks

16:30
Beyond Polarity: Towards A Multi-Discipline Intermediate Language with Sharing
SPEAKER: Paul Downen

ABSTRACT. The study of polarity in computation has revealed that an "ideal" programming language combines both call-by-value and call-by-name evaluation; the two calling conventions are each ideal for half the types in a programming language. But this binary choice leaves out call-by-need which is used in practice to implement lazy-by-default languages like Haskell. We show how the notion of polarity can be extended beyond the value/name dichotomy to include call-by-need by only adding a mechanism for sharing and the extra polarity shifts to connect them, which is enough to compile a Haskell-like functional language with user-defined types.

17:00
On compositionality of dinatural transformations

ABSTRACT. Natural transformations are ubiquitous in mathematics, logic and computer science. For operations of mixed variance, such as currying and evaluation in the lambda-calculus, Eilenberg and Kelly's notion of extranatural transformation, and often the even more general dinatural transformation, is required. Unfortunately dinaturals are not closed under composition except in special circumstances. This paper presents a new sufficient condition for composability.

We propose a generalised notion of dinatural transformation in many variables, and extend the Eilenberg-Kelly account of composition for extranaturals to these transformations. Our main result is that a composition of dinatural transformations which creates no cyclic connections between arguments yields a dinatural transformation.

We also extend the classical notion of horizontal composition to our generalised dinaturals and demonstrate that it is associative and has identities.

17:30
Rule Algebras for Adhesive Categories
SPEAKER: Nicolas Behr

ABSTRACT. We show that every adhesive category gives rise to an associative algebra of rewriting rules induced by the notion of double-pushout (DPO) rewriting and the associated notion of concurrent production. In contrast to the original formulation of rule algebras in terms of relations between (a concrete notion of) graphs, here we work in an abstract categorical setting. Doing this, we extend the classical concurrency theorem of DPO rewriting and show that the composition of DPO rules along abstract dependency relations is, in a natural sense, an associative operation. If in addition the adhesive category possesses an initial object, the resulting rule algebra is also unital. We demonstrate that in this setting a natural definition of canonical representation of the rule algebras is obtainable, which in turn opens the possibility of applying the concept to define and compute statistical moments of observables in stochastic DPO rewriting systems.

18:00
Graphical Conjunctive Queries
SPEAKER: Jens Seeber

ABSTRACT. The Calculus of Conjunctive Queries (CCQ) has foundational status in database theory. A celebrated theorem of Chandra and Merlin states that CCQ query inclusion is decidable. Its proof transforms logical formulas to graphs: each query has a universal model - a kind of graph - and query inclusion reduces to the existence of a graph homomorphism between universal models.

We introduce the diagrammatic language Graphical Conjunctive Queries (GCQ) and show that it has the same expressivity as CCQ. GCQ terms are string diagrams, and their algebraic structure allows us to derive a sound and complete axiomatisation of query inclusion, which turns out to be exactly Carboni and Walters' notion of Cartesian bicategory of relations. Our completeness proof exploits the combinatorial nature of string diagrams as (certain cospans of) hypergraphs: Chandra and Merlin's insights inspire a theorem that relates such cospans with spans. Completeness and decidability of the (in)equational theory of GCQ follow as a corollary. Categorically speaking, our contribution is a model-theoretic completeness theorem of free cartesian bicategories (on a relational signature) for the category of sets and relations.

19:00-20:30

Reception at the Lapworth Museum