The p-dispersion problem with distance constraints
ABSTRACT. In the (maxmin) p-dispersion problem we seek to locate a set of facilities in an area so that the minimum distance between any pair of facilities is maximized. We study a variant of this problem where there exist constraints specifying the minimum allowed distances between the facilities. This type of problem, which we call PDDP, has not received much attention within the literature on location and dispersion problems, despite its relevance to real scenarios.
We propose both ILP and CP methods to solve the PDDP. Regarding ILP, we give two formulations derived from a classic and a state-of-the-art model for p-dispersion, respectively. Regarding CP, we first give a generic model that can be implemented within any standard CP solver, and we then propose a specialized heuristic Branch&Bound method. Experiments demonstrate that the ILP formulations are more efficient than the CP model, as the latter is unable to prove optimality, except for small problems, and is usually slower in finding solutions of the same quality as the ILP models. However, although the ILP approach displays good performance on small to medium size problems, it cannot efficiently handle larger ones. The heuristic CP-based method can be very efficient on larger problems and is able to quickly discover solutions to problems that are very hard for an ILP solver.
ABSTRACT. Multi-objective problems are frequent in the real world. In general they involve several incomparable objectives and the goal is to find a set of Pareto optimal solutions, i.e. solutions that are incomparable two by two. In order to better deal with these problems in CP the global constraint Pareto was developed by Schaus and Hartert to handle the relations between the objective variables and the current set of pareto optimal solutions, called the archive. This constraint handles three operations: adding a new solution to the archive, removing solutions from the archive that are dominated by a new solution, and reducing the bounds of the objective variables. The complexity of these operations depends on the size of the archive.
In this paper, we propose to use a Multi-valued Decision Diagram (MDD) to represent the archive of pareto optimal solutions.
MDDs are a compressed representation of solution sets, which allows us to obtain a compressed and therefore smaller archive.
We introduce several algorithms to implement the above operations on compressed archives with a complexity depending on the size of the archive. We show experimentally on bin packing and multi-criteria knapsack problems the validity of our approach.