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Abstract

This paper presents a discussion on application of second-order- like search di-
rections in the Stochastic Approximation methods together with convergence
conditions and some results on numerical implementation. We consider strictly
convex problems in noisy environment and assume that only noisy values for
the objective function and the gradient are available, as well as some approx-
imate Hessian value. Under the zero mean assumption on noise a convergence
analysis is presented for methods that use some approximate second-order di-
rection. We prove that there exists a level of inexactness, governed by the usual
gain sequence in SA methods, that does not interfere with the convergence and
hence derive the set of convergence conditions that are applicable to a number of
search directions. These directions include the so called mini-batch subsampled
Hessian in statistical learning and similar directions. A set of numerical tests is
presented in order to demonstrate efficiency and implementation issues of the
proposed methods.
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