Error bounds for Kronrod extension of generalizations of Micchelli-Rivlin quadrature formula for analytic functions

Rada Mutavdžić and Aleksandar Pejčev

Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16
11000 Belgrade, Serbia
{rmutavdzic,apejcev}@mas.bg.ac.rs

Abstract

We consider Kronrod extension of generalizations of the well known Micchelli-Rivlin quadrature formula, of highest algebraic degree of precision, for the Fourier-Chebyshev coefficients. For analytic functions the remainder term of these quadrature formulas can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points ±1 and a sum of semi-axes $\rho > 1$, for the quoted quadrature formulas. Starting from the explicit expression of the kernel, we determine the locations on the ellipses where maximum modulus of the kernel is attained. So we derive effective L^∞-error bounds for these quadrature formulas. Complex-variable methods are used to obtain expansions of the error in these quadrature formulas over the interval $[-1,1]$. Finally, effective L^1-error bounds are also derived for these quadrature formulas.

Keywords: Kronrod extension of the generalizations of Micchelli-Rivlin quadrature formula, Chebyshev weight function of the first kind, Error bound, Remainder term for analytic functions, Contour integral representation

References

10. C.A. Micchelli, T.J. Rivlin, Turán formulae and highest precision quadrature rules
for Chebyshev coefficients, IBM J. Res. Develop. 16 (1972) 372–379.
11. C.A. Micchelli, T.J. Rivlin, Some new characterizations of the Chebyshev poly-
12. G.V. Milovanović, M.M. Spalević, An error expansion for some Gauss-Turán
quadratures and \(L^1 \)-estimates of the remainder term, BIT Numer. Math. 45 (2005)
117–136.
13. G.V. Milovanović, M.M. Spalević, Kronrod extensions with multiple nodes of
14. G.V. Milovanović, R. Orive, M.M. Spalević, Quadrature with multiple nodes for
Fourier-Chebyshev coefficients, preprint.
15. G.V. Milovanović, A.V. Pejčev, M.M. Spalević, A note on an error bound of Gauss-
Turán quadrature with the Chebyshev weight, FILOMAT 27 (2013) 1037-1042.
17. A.V. Pejčev, M.M. Spalević, The error bounds of Gauss-Radau quadrature formula-
18. R. Scherer, T. Schira, Estimating quadrature errors for analytic functions using
19. T. Schira, The remainder term for analytic functions of symmetric Gaussian