Multiple Hermite polynomials and simultaneous quadrature

Walter Van Assche¹

Department of Mathematics, KU Leuven, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium walter@wis.kuleuven.be

Abstract

Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which orthogonality conditions are imposed with respect to r > 1 normal (Gaussian) weights with different means c_i , $1 \le i \le r$. These polynomials have a number of properties, such as a Rodrigues formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation, etc. The asymptotic distribution of the (scaled) zeros is well understood and an interesting new feature happens: depending on the distance between the means c_i , $1 \le i \le r$: the zeros may accumulate on s disjoint intervals, where $1 \le s \le r$. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form $\int_{-\infty}^{\infty} f(x) \exp(-x^2 + c_j x) dx$ simultaneously for $1 \le j \le r$. The behavior of the quadrature weights depends in an important way on whether or not the zeros are on disjoint intervals or on one interval.

Keywords: Multiple orthogonal polynomials, Hermite polynomials, simultaneous quadrature