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Abstract

We are concerned with the solution to the general time-invariant matrix equation
AV (t)B = D and the time-varying matrix equation A(t)V (t)B(t) = D(t) by
means of gradient based neural network (GNN) model, called the GNNABD
model. The resulting matrix generated by the GNNABD model is defined by the
choice of the initial state and coincides with the general solution of the matrix
equation AV B = D. Several particular appearances of this matrix equation
and their applications in approximatting various inner and outer inverses are
considered. Particularly, two particular cases of the general GNNABD model,
globally convergent to the Moore-Penrose inverse and the Drazin inverse are
defined and investigated theoretically and numerically. The influence of various
nonlinear activation functions on several variants of the GNNABD model are
investigated.

Required matrix equations can be solved by the generalized nonlinearly acti-
vated GNN model (GGNN model) which is applicable in both time-varying and
time-invariant case and possesses the form

dV (t)

dt
= V̇ (t) = γATF(D −AV (t)B)BT. (1)

The matrix-valued activation function F(E), E = (eij), is defined as (f(eij)),
i, j = 1, 2, . . . , n, where f(·) is a scalar-valued monotonically-increasing odd func-
tion.

Theorem 1. Assume that real matrices A ∈ R
m×n, B ∈ R

p×q and D ∈ R
m×q

satisfy

AA(1)DB(1)B = D, (2)

for some inner inverses A(1) and B(1). If an odd and monotonically increasing

function f(·) is used to define the array activation function F(·), then the state

matrix V (t) ∈ R
n×m of the GNNABD model (1) satisfies AV (t)B → D when

t → +∞, for an arbitrary initial state matrix V (0).

Theorem 2. Assume that the real matrices A ∈ R
m×n, B ∈ R

p×q and D ∈
R

m×q satisfy

AA†DB†B = D. (3)
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Then the unknown matrix V (t) of the model GNNABD is convergent when t →
+∞ and has the limit value

Ṽ = A†DB† + V (0)−A†AV (0)BB† (4)

for every initial matrix V (0) ∈ R
n×p.

Some appearances of the general linear matrix equation AXB = D are con-
sidered.

Conditions for the existence and representations of {2}-, {1}- and {1, 2}-
inverses which satisfy certain conditions on ranges and/or null spaces are in-
troduced in [4]. These representations are applicable to complex matrices and
involve solutions of certain matrix equations.

Solution Ṽ of the matrix equation

BV (t)CAB = B

defined by the GNABD model

V̇ (t) = BTF(B −BV (t)CAB)(CAB)T (5)

gives Ṽ ∈ (CAB){1}. Then X = BṼ C gives various representations of outer
inverses, according to Urguhart formula.

Algorithms arising from the introduced representations are developed. Par-
ticularly, these algorithms can be used to compute the Moore-Penrose inverse,
the Drazin inverse and the usual matrix inverse. The implementation of intro-
duced algorithms is defined on the set of real matrices and it is based on the
Simulink implementation of GNN models for solving the involved matrix equa-
tions. In this way, we develop computational procedures which generate various
classes of inner and outer generalized inverses on the basis of resolving certain
matrix equations. As a consequence, some new relationships between the prob-
lem of solving matrix equations and the problem of numerical computation of
generalized inverses are established. Theoretical results are applicable to complex
matrices and the developed algorithms are applicable to both the time-varying
and time-invariant real matrices.

The general computational pattern for commuting generalized inverses is
based on the general representation B(CAB)(1)C, where the matrices A,B,C

satisfy various conditions imposed in the proposed algorithms.

The general computational pattern for computing generalized inverses can
be described in two main steps:
(1) Solve appropriate linear matrix equation BUCAB = B with respect to U

using GNNABD model.
(2) Compute the matrix product BUC.

GNN models defined in [1–3, 5] can be derived as modifications of some ap-
pearances of the GNNABD model.

The GNNABD model for solving the matrix equation AATV ATA = A is
given by

V̇ = γAATF
(

A−AATV (t)ATA
)

ATA, (6)

and it is called as GNNABD-MP.
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Theorem 3. Let Ṽ (t) be a solution of the model (6). Then the matrix X(t) =
ATṼ (t)AT converges to the Moore-Penrose inverse A† for every initial matrix

V (0).
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