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Abstract 

Orthogonality means two vectors are perpendicular to 
each other and due to this we can get to know that those 

two vectors are independent to each other. This paper is 

devoted towards the orthogonality applications in image 
processing. 
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Introduction 

In mathematics, orthogonality is the 

generalization of the notion of perpendicularity 

to the linear algebra of bilinear forms. Two 

elements u and v of a vector space with bilinear 

form B are orthogonal when B(u, v) = 0. 

Depending on the bilinear form, the vector 

space may contain non-zero self-orthogonal 

vectors. In the case of function spaces, families 

of orthogonal functions are used to form a 

basis. 

 

 

By extension, orthogonality is also used to refer 

to the separation of specific features of a 

system. The term also has specialized meanings 

in other fields including art and chemistry. 

 

Definitions 

 In geometry, two Euclidean vectors are 

orthogonal if they are perpendicular, 

i.e., they form a right angle. 

 Two vectors, x and y, in an inner product 

space, V, are orthogonal if their inner 

product <x, y> is zero. 

 Two vector subspaces, A and B, of an 

inner product space V, are called 

orthogonal subspaces if each other in A 

is orthogonal to a given subspace is its 

orthogonal complement. 

A set of vectors in an inner product space is 

called pairwise orthogonal if each pairing of 

them is orthogonal. Such a set is called an 

orthogonal set. 

In certain cases, the word normal is used to 

mean orthogonal, particularly in the 

geometric sense as in the normal to a 

surface. for example, the y-axis is normal to 

the curve y = x^2 at the origin. However, 

normal may also refer to the magnitude of 

a vector. In particular, a set is called 

orthonormal (orthogonal plus normal) if it is 

an orthogonal set of unit vectors. As a 

result, use of the term normal to mean 

“orthogonal” is often avoided. The word 



 

“normal” also has a different meaning in 

probability and statistics. 

Orthogonality in programming language 

design is the ability to use various language 

features in arbitrary combinations with 

consistent results. This usage was 

introduced by Van Wijngaarden in the 

design of Algol 68. 

The number of independent primitives’ 

concepts has been minimized in order that 

the language be easy to describe, to learn, 

and to implement. On the other hand, these 

concepts have been applied “orthogonally” 

in order to maximize the expressive power 

of the language while trying to avoid 

deleterious superfluities. 

 

Orthogonality in statistics 

When performing statistical analysis, 

independent variables that affect a particular 

dependent variable are said to be orthogonal if 

they are uncorrelated, since the covariance 

forms an inner product. In the case the same 

results are obtained for the effect of any if the 

independent variables upon the dependent 

variables, regardless of whether one models 

the effects of the variables individually with 

simple regression or simultaneously with 

multiple regression. If correlation is present, 

the factors are not orthogonal and different 

results are obtained by the two methods. This 

usage arises from the fact that if centered by 

subtracting the expected value (the mean), 

uncorrelated variables are orthogonal in the 

geometric sense discussed above, both as 

observed data (i.e., vectors) and as random 

variables (i.e., density functions). One 

econometric formalism that is alternative to the 

maximum likelihood framework, the 

generalized method of moments, relies on 

orthogonality conditions. In particular, the 

ordinary least squares estimator may be easily 

derived from an orthogonality condition 

between the explanatory variables and model 

residuals. 

 

Orthogonal means that the inner product is 

zero. For example, in the case of using dot 

product as your inner product, two 

perpendicular vectors are orthogonal. 

Orthogonal means these vectors have been 

normalized so that their length is 1. 

Orthogonal vectors are useful for creating a 

basis for a space. This is because every point in 

the space can be represented as a (linear) 

combination of the vectors. So for example in 

3D space, x = [0, 0, 1], y = [1, 0, 0] form an 

orthonormal basis. No component of x can be 

represented with a component of the other 

vectors. This is because they are linearly 

independent.  

This is different type of independence to 

statistical dependence however. 

Correlation is a different notion. There are 

different ways of representing the correlation 

of two vectors (random variables X and Y). 

 

 
Correlation 

 A correlation is a statistic intended to 
quantify the strength of the relationship 
between two variables. 

 A challenge in measuring correlation is that 
the variables we want to compare are often 
not expressed in the same units. And even if 
they are in the same units, they come from 
different distributions.  

 There are two common solutions to these 
problems:  
1. Transform each value to a standard score, 
which is the number of standard deviations 
from the mean. This transform leads to the 



 

“Pearson product-moment   correlation 
coefficient.”  
2. Transform each value to its rank, which is 
its index in the sorted list of values. This 
transform leads to the “Spearman rank 
correlation coefficient.” 
  
Covariance  

 Covariance is a measure of the tendency of 
two variables to vary together. 

 If you have studied linear algebra, you might 
recognize that Cov is the dot product of the 
deviations, divided by their length. So, the 
covariance is maximized if the two vectors 
are identical, 0 if they are orthogonal, and 
negative if they point in opposite directions. 

 

Another measure of correlation is cross-

correlation. This is measure of the similarity of 

two functions (or vectors). 

These concepts are used in many different ways 

in image processing. 

For example, cross-correlation is used in 

template matching when looking for a small 

image inside a much larger image, the small 

template image is ‘slided’ over the large image 

and the cross-correlation is computed for each 

position. Locations with a high cross-correlation  

Are likely to contain the image we are looking 

for. 

The concept of linearly independent 

component vectors is used in principal 

component analysis (PCA). PCA takes a cloud of 

points in space and calculates a set of 

orthogonal basis vectors to represent them. 

Independent component analysis (ICA) is used 

for separating mixed signals. i.e., separating a 

speaker at a noisy cocktail party. ICA used 

properties of the signal correlation to separate 

the signals. 
1 Image Correlation The image in figure 1(a) shows a 
detail of the ventral epidermis of a fruit fly embryo 

viewed through a microscope. Biologists are interested in 

studying the shapes and arrangement of the dark, sail-

like shapes that are called denticles. A simple idea for 
writing an algorithm to find the denticles automatically is 

to create a template T, that is, an image of a typical 
denticle. Figure 1(b) shows a possible template, which 

was obtained by blurring (more on blurring later) a detail 
out of another denticle image. One can then place the 

template at all possible positions (r, c) of the input image 
I and somehow measure the similarity between the 

template T and a window W(r, c) out of I, of the same 

shape and size as T. Places where the similarity is high are 
declared to be denticles, or at least image regions worthy 

of further analysis. 

 
Template matching is a method for searching 

and finding the location of a template image in 

a large image. OpenCV comes with a function 

cv2.matchTemplate() for this purpose simply 

slides the template image over the input image 

(as in 2D convolution) and compares the 

template and patch of input image under the 

template image. Several comparison methods 

are implemented in OpenCV. (you can check 

docs for more details). It returns a grayscale 

image, where each pixel denotes how much 

does the neighbourhood of that pixel match 

with template. 

 

If input image is of size (WxH) and template is 

of size (wxh), output image will have a size of 

(W-w+1, H-h+1). Once you got the result, you 

can use cv2.minMaxLoc() function to find 

where is the maximum/minimum value. Take it 

as the top-left corner of rectangle and take (w, 

h) as width and height of the rectangle is your 

region of template. 

 



 

 Time Complexity:  

Template matching is a technique in digital 

image processing for finding small parts of an 

image which match a template image. It can be 

used in manufacturing as a part of quality 

control, a way to navigate a mobile robot, or as 

a way to detect edges in images. 

To match 2 2D arrays, to find all sub arrays, it 

will take m*n*o*p. where m*n is first array and 

o*p is second array.  

 

Application in Real World: 

In most computer vision and image analysis 

problems, it is necessary to define a similarity 

measure between two or more different 

objects or images. Template matching is a 

classic and fundamental method used to score 

similarities between objects using certain 

mathematical algorithms. These models have 

broad applications in image registration, and 

they are a fundamental aspect of novel 

machine vision or deep learning algorithms, 

such as convolutional neural networks (CNN), 

which perform shift and scale invariant 

functions followed by classification. In general, 

although template matching methods have 

restrictions which limit their application, they 

are recommended for use with other object 

recognition methods as pre- or post-processing 

steps. Combining a template matching 

technique such as normalized cross-correlation 

or dice coefficient with a robust decision-

making algorithm yields a significant 

improvement in the accuracy rate for object 

detection and recognition. 

In simple implementation, it is assumed that 

the escribed method is applied on grey images. 

This is why grey is used as pixel intensity. The 

final position in this implementation gives the 

top left location for where the template image 

best matches the search image. 
 

 

Conclusion: 

Orthogonality is simple and effective method to 

et more from image processing. A basic method 

of template matching uses an image patch 

(template), tailored to a specific feature of the 

search image, which we want to detect. This 

technique can be easily performed on grey 

images or edge images. The cross-correlation 

output will be highest at places where the 

image structure matches the mask structure, 

where large image values get multiplied by 

large mask values. 
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IMPLEMENTATION : 

 

 

import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
 
img = cv2.imread('messi5.jpg',0) 
img2 = img.copy() 
template = cv2.imread('template.jpg',0) 
w, h = template.shape[::-1] 
 
# All the 6 methods for comparison in a list 
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 
            'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'] 
 
for meth in methods: 
    img = img2.copy() 
    method = eval(meth) 
 
    # Apply template Matching 
    res = cv2.matchTemplate(img,template,method) 
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) 
 
    # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum 
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: 
        top_left = min_loc 
    else: 
        top_left = max_loc 
    bottom_right = (top_left[0] + w, top_left[1] + h) 
 
    cv2.rectangle(img,top_left, bottom_right, 255, 2) 
 
    plt.subplot(121),plt.imshow(res,cmap = 'gray') 
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) 
    plt.subplot(122),plt.imshow(img,cmap = 'gray') 
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) 
    plt.suptitle(meth) 
 
    plt.show() 
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